-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathTrapezium.c
363 lines (313 loc) · 11.2 KB
/
Trapezium.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
T0 > T1 > T2 > Slow
| | | /
| | B2
| | /
| B1
| /
B0
|
CS
reverse upward path
*/
// Recursive versions of the Triangle algorithm
//
// When the Triangle algorithm runs at full contention, half of the threads go via the fast route and the other half are
// routed along the slow route. It therefore pays to make the slow route as fast as possible. Why not use the Triangle
// algorithm for this purpose? Then, within this embedded triangle, we could use the triangle again. Let us allow a
// nesting of K > 0 levels. We then need K versions of LamportFast with its shared variables x and y and array b, and K
// versions of Binary. The calls are entryFast(i, p), exitFast(i, p), and entryBinary(i, b) and exitBinary(i, b), where
// p ranges over the thread numbers, and 0 <= i < K, and b over the booleans (bits).
//
// There are two versions. In both versions, we need only modify Figure 2 of the paper (apart from the K systems of
// shared variables of Fast and Binary). The first version uses an arbitrary slow algorithm as in the paper. If K = 1,
// this should be just the Triangle algorithm.
#include <stdbool.h>
#define inv( c ) ( (c) ^ 1 )
#include "Binary.c"
#ifdef TB
static TYPE PAD1 CALIGN __attribute__(( unused )); // protect further false sharing
static VTYPE ** intents CALIGN; // triangular matrix of intents
static VTYPE ** turns CALIGN; // triangular matrix of turns
static unsigned int depth CALIGN;
static TYPE PAD2 CALIGN __attribute__(( unused )); // protect further false sharing
#else
typedef struct CALIGN {
Token * ns; // pointer to path node from leaf to root
TYPE es; // left/right opponent
} Tuple;
static TYPE PAD1 CALIGN __attribute__(( unused )); // protect further false sharing
static Tuple ** states CALIGN; // handle N threads
static int * levels CALIGN; // minimal level for binary tree
//static Tuple states[64][6] CALIGN; // handle 64 threads with maximal tree depth of 6 nodes (lg 64)
//static int levels[64] = { -1 } CALIGN; // minimal level for binary tree
static Token * t CALIGN;
static TYPE PAD2 CALIGN __attribute__(( unused )); // protect further false sharing
#endif // TB
//======================================================
static inline void entrySlow(
#ifdef TB
TYPE id
#else
int level, Tuple * state
#endif // TB
) {
#ifdef TB
unsigned int ridt, ridi;
// ridi = id;
for ( unsigned int lv = 0; lv < depth; lv += 1 ) { // entry protocol
ridi = id >> lv; // round id for intent
ridt = ridi >> 1; // round id for turn
intents[lv][ridi] = 1; // declare intent
turns[lv][ridt] = ridi; // RACE
Fence(); // force store before more loads
while ( intents[lv][ridi ^ 1] == 1 && turns[lv][ridt] == ridi ) Pause();
// ridi = ridi >> 1;
} // for
#else
for ( int s = 0; s <= level; s += 1 ) { // entry protocol
binary_prologue( state[s].es, state[s].ns );
} // for
#endif // TB
} // entrySlow
static inline void exitSlow(
#ifdef TB
TYPE id
#else
int level, Tuple * state
#endif // TB
) {
#ifdef TB
for ( int lv = depth - 1; lv >= 0; lv -= 1 ) { // exit protocol
intents[lv][id >> lv] = 0; // retract all intents in reverse order
} // for
#else
for ( int s = level; s >= 0; s -= 1 ) { // exit protocol, reverse order
binary_epilogue( state[s].es, state[s].ns );
} // for
#endif // TB
} // exitSlow
//======================================================
enum { K = NEST };
typedef struct CALIGN {
VTYPE * b;
VTYPE x, y;
Token B; // = { { 0, 0 }, 0 };
} FastPaths;
static TYPE PAD3 CALIGN __attribute__(( unused )); // protect further false sharing
static FastPaths fastpaths[K] CALIGN; // zero filled
static TYPE PAD4 CALIGN __attribute__(( unused )); // protect further false sharing
static void * Worker( void * arg ) {
TYPE id = (size_t)arg;
uint64_t entry;
#ifdef FAST
unsigned int cnt = 0, oid = id;
#endif // FAST
NCS_DECL;
#ifndef TB
int level = levels[id];
Tuple * state = states[id];
#endif // ! TB
intptr_t fa;
FastPaths * fp;
for ( int r = 0; r < RUNS; r += 1 ) {
RTYPE randomThreadChecksum = 0;
#ifdef CNT
for ( unsigned int i = 0; i < CNT + 1; i += 1 ) { // reset for each run
counters[r][id].cnts[i] = 0;
} // for
#endif // CNT
for ( entry = 0; stop == 0; entry += 1 ) {
NCS;
#if 0
for ( fa = 0; fa < K; fa += 1 ) {
fp = &fastpaths[fa]; // optimization
if ( FASTPATH( fp->y == N ) ) {
fp->b[id] = true;
WO( Fence(); ); // force store before more loads
fp->x = id;
Fence(); // force store before more loads
if ( FASTPATH( fp->y == N ) ) {
fp->y = id;
Fence(); // force store before more loads
if ( FASTPATH( fp->x == id ) ) goto Fast;
fp->b[id] = false;
Fence(); // OPTIONAL, force store before more loads
for ( uintptr_t k = 0; fp->y == id && k < N; k += 1 )
// For "while (A && B) pause;" (see await), the order A and B are read does not matter, because
// the loop terminates and must terminate whenever either !A or !B is observed (separately),
// modulo A and B have no side effects. Therefore, A && B can be read with interference.
await( fp->y != id || ! fp->b[k] );
// If the loop consistently reads an outdated value of y (== id from assignment above), there is only
// the danger of starvation, and that is unlikely. Correctness only requires the value read after the
// loop is recent.
WO( Fence(); );
if ( FASTPATH( fp->y == id ) ) goto Fast;
} else {
fp->b[id] = false;
} // if
} // if
} // for
goto Slow;
#else
for ( fa = 0; fa < K; fa += 1 ) {
fp = &fastpaths[fa]; // optimization
if ( SLOWPATH( fp->y != N ) ) continue;
fp->b[id] = true; // entry protocol
WO( Fence(); ); // force store before more loads
fp->x = id;
Fence(); // force store before more loads
if ( SLOWPATH( fp->y != N ) ) {
fp->b[id] = false;
continue;
} // if
fp->y = id;
Fence(); // force store before more loads
if ( SLOWPATH( fp->x != id ) ) {
fp->b[id] = false;
Fence(); // OPTIONAL, force store before more loads
for ( uintptr_t k = 0; fp->y == id && k < N; k += 1 )
// For "while (A && B) pause;" (see await), the order A and B are read does not matter, because
// the loop terminates and must terminate whenever either !A or !B is observed (separately),
// modulo A and B have no side effects. Therefore, A && B can be read with interference.
await( fp->y != id || ! fp->b[k] );
// If the loop consistently reads an outdated value of y (== id from assignment above), there is only
// the danger of starvation, and that is unlikely. Correctness only requires the value read after the
// loop is recent.
WO( Fence(); ); // read recent y
if ( SLOWPATH( fp->y != id ) ) continue;
} // if
goto Fast;
} // for
goto Slow;
#endif // 0
Fast: ;
#ifdef CNT
counters[r][id].cnts[fa] += 1;
#endif // CNT
for ( intptr_t i = fa; i >= 0; i -= 1 ) {
binary_prologue( i < fa, &fastpaths[i].B );
} // for
randomThreadChecksum += CS( id );
for ( unsigned int i = 0; i <= fa; i += 1 ) {
binary_epilogue( i < fa, &fastpaths[i].B );
} // for
WO( Fence(); ); // prevent write floating up
fp->y = N;
WO( Fence(); ); // write order matters
fp->b[id] = false;
goto Fini;
Slow:
#ifdef CNT
counters[r][id].cnts[fa] += 1;
#endif // CNT
entrySlow(
#ifdef TB
id
#else
level, state
#endif // TB
);
fa -= 1;
for ( intptr_t i = fa; i >= 0; i -= 1 ) {
binary_prologue( 1, &fastpaths[i].B );
} // for
randomThreadChecksum += CS( id );
for ( unsigned int i = 0; i <= fa; i += 1 ) {
binary_epilogue( 1, &fastpaths[i].B );
} // for
exitSlow(
#ifdef TB
id
#else
level, state
#endif // TB
);
Fini: ;
#ifdef FAST
id = startpoint( cnt ); // different starting point each experiment
cnt = cycleUp( cnt, NoStartPoints );
#endif // FAST
} // for
Fai( sumOfThreadChecksums, randomThreadChecksum );
#ifdef FAST
id = oid;
#endif // FAST
entries[r][id] = entry;
Fai( Arrived, 1 );
while ( stop != 0 ) Pause();
Fai( Arrived, -1 );
} // for
return NULL;
} // Worker
//=========================================================================
void __attribute__((noinline)) ctor2() {
#ifdef TB
depth = Clog2( N ); // maximal depth of binary tree
int width = 1 << depth; // maximal width of binary tree
intents = Allocator( sizeof(typeof(intents[0])) * depth ); // allocate matrix columns
turns = Allocator( sizeof(typeof(turns[0])) * depth );
for ( unsigned int r = 0; r < depth; r += 1 ) { // allocate matrix rows
unsigned int size = width >> r; // maximal row size
intents[r] = Allocator( sizeof(typeof(intents[0][0])) * size );
for ( unsigned int c = 0; c < size; c += 1 ) { // initial all intents to dont-want-in
intents[r][c] = 0;
} // for
turns[r] = Allocator( sizeof(typeof(turns[0][0])) * (size >> 1) ); // half maximal row size
} // for
#else
// element 0 not used
t = Allocator( sizeof(typeof(t[0])) * N );
// states[id][s].es indicates the left or right contender at a match.
// states[id][s].ns is the address of the structure that contains the match data.
// s ranges from 0 to the tree level of a start point (leaf) in a minimal binary tree.
// levels[id] is level of start point minus 1 so bi-directional tree traversal is uniform.
states = Allocator( sizeof(typeof(states[0])) * N );
levels = Allocator( sizeof(typeof(levels[0])) * N );
levels[0] = -1; // default for N=1
for ( typeof(N) id = 0; id < N; id += 1 ) {
t[id].Q[0] = t[id].Q[1] = t[id].R = 0;
unsigned int start = N + id, level = Log2( start );
states[id] = Allocator( sizeof(typeof(states[0][0])) * level );
levels[id] = level - 1;
for ( unsigned int s = 0; start > 1; start >>= 1, s += 1 ) {
states[id][s].es = start & 1;
states[id][s].ns = &t[start >> 1];
} // for
} // for
#endif // TB
} // ctor2
void __attribute__((noinline)) ctor() {
for ( uintmax_t k = 0; k < K; k += 1 ) { // initialize shared data
fastpaths[k].b = Allocator( sizeof(typeof(fastpaths[0].b[0])) * N );
for ( uintmax_t i = 0; i < N; i += 1 ) {
fastpaths[k].b[i] = 0;
} // for
fastpaths[k].y = N;
} // for
ctor2(); // tournament allocation/initialization
} // ctor
void __attribute__((noinline)) dtor2() {
#ifdef TB
for ( int r = 0; r < depth; r += 1 ) { // deallocate matrix rows
free( (void *)turns[r] );
free( (void *)intents[r] );
} // for
free( (void *)turns ); // deallocate matrix columns
free( (void *)intents );
#else
free( (void *)levels );
free( (void *)states );
free( (void *)t );
#endif // TB
} // dtor2
void __attribute__((noinline)) dtor() {
dtor2(); // tournament deallocation
for ( uintmax_t k = 0; k < K; k += 1 ) {
free( (void *)fastpaths[k].b );
} // for
} // dtor
// Local Variables: //
// tab-width: 4 //
// compile-command: "gcc -DNEST=3 -Wall -Wextra -std=gnu11 -O3 -DNDEBUG -fno-reorder-functions -DPIN -DAlgorithm=Trapezium Harness.c -lpthread -lm -D`hostname` -DCFMT -DCNT=0" //
// End: //