forked from pitmonticone/LeanInVienna2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS01_Calculating.lean
243 lines (181 loc) · 6.06 KB
/
S01_Calculating.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import LeanInVienna.Common
import Mathlib.Data.Real.Basic
/- The following exercises with `calc` blocks from *The Mechanics of Proof* by Heather Macbeth. -/
example {a b : ℚ} (h1 : a - b = 4) (h2 : a * b = 1) : (a + b) ^ 2 = 20 :=
calc
(a + b) ^ 2 = (a - b) ^ 2 + 4 * (a * b) := by ring
_ = 4 ^ 2 + 4 * 1 := by rw [h1, h2]
_ = 20 := by ring
-- Exercise: replace the words "sorry" with the correct Lean justification.
example {r s : ℝ} (h1 : s = 3) (h2 : r + 2 * s = -1) : r = -7 :=
calc
r = r + 2 * s - 2 * s := by sorry
_ = -1 - 2 * s := by sorry
_ = -1 - 2 * 3 := by sorry
_ = -7 := by sorry
-- Exercise: replace the words "sorry" with the correct Lean justification.
example {a b m n : ℤ} (h1 : a * m + b * n = 1) (h2 : b ^ 2 = 2 * a ^ 2) :
(2 * a * n + b * m) ^ 2 = 2 :=
calc
(2 * a * n + b * m) ^ 2
= 2 * (a * m + b * n) ^ 2 + (m ^ 2 - 2 * n ^ 2) * (b ^ 2 - 2 * a ^ 2) := by sorry
_ = 2 * 1 ^ 2 + (m ^ 2 - 2 * n ^ 2) * (2 * a ^ 2 - 2 * a ^ 2) := by sorry
_ = 2 := by sorry
example {a b c d e f : ℤ} (h1 : a * d = b * c) (h2 : c * f = d * e) :
d * (a * f - b * e) = 0 :=
sorry
example {a b : ℤ} (h1 : a = 2 * b + 5) (h2 : b = 3) : a = 11 :=
sorry
example {x : ℤ} (h1 : x + 4 = 2) : x = -2 :=
sorry
example {a b : ℝ} (h1 : a - 5 * b = 4) (h2 : b + 2 = 3) : a = 9 :=
sorry
example {w : ℚ} (h1 : 3 * w + 1 = 4) : w = 1 :=
sorry
example {x : ℤ} (h1 : 2 * x + 3 = x) : x = -3 :=
sorry
example {x y : ℤ} (h1 : 2 * x - y = 4) (h2 : y - x + 1 = 2) : x = 5 :=
sorry
example {u v : ℚ} (h1 : u + 2 * v = 4) (h2 : u - 2 * v = 6) : u = 5 :=
sorry
example {x y : ℝ} (h1 : x + y = 4) (h2 : 5 * x - 3 * y = 4) : x = 2 :=
sorry
example {a b : ℚ} (h1 : a - 3 = 2 * b) : a ^ 2 - a + 3 = 4 * b ^ 2 + 10 * b + 9 :=
sorry
example {z : ℝ} (h1 : z ^ 2 - 2 = 0) : z ^ 4 - z ^ 3 - z ^ 2 + 2 * z + 1 = 3 :=
sorry
example {x y : ℝ} (h1 : x = 3) (h2 : y = 4 * x - 3) : y = 9 :=
sorry
example {a b : ℤ} (h : a - b = 0) : a = b :=
sorry
example {x y : ℤ} (h1 : x - 3 * y = 5) (h2 : y = 3) : x = 14 :=
sorry
example {p q : ℚ} (h1 : p - 2 * q = 1) (h2 : q = -1) : p = -1 :=
sorry
example {x y : ℚ} (h1 : y + 1 = 3) (h2 : x + 2 * y = 3) : x = -1 :=
sorry
example {p q : ℤ} (h1 : p + 4 * q = 1) (h2 : q - 1 = 2) : p = -11 :=
sorry
example {a b c : ℝ} (h1 : a + 2 * b + 3 * c = 7) (h2 : b + 2 * c = 3) (h3 : c = 1) : a = 2 :=
sorry
example {u v : ℚ} (h1 : 4 * u + v = 3) (h2 : v = 2) : u = 1 / 4 :=
sorry
example {c : ℚ} (h1 : 4 * c + 1 = 3 * c - 2) : c = -3 :=
sorry
-- An example.
example (a b c : ℝ) : a * b * c = b * (a * c) := by
rw [mul_comm a b]
rw [mul_assoc b a c]
-- Try these.
example (a b c : ℝ) : c * b * a = b * (a * c) := by
rw [mul_comm c b]
rw [mul_assoc b c a]
rw [mul_comm a c]
example (a b c : ℝ) : a * (b * c) = b * (a * c) := by
rw [mul_comm a c] -- ⊢ a * (b * c) = b * (c * a)
let b' := b * c
rw [mul_comm a b'] -- ⊢ b' * a = b * (c * a)
rw [mul_assoc b c a]
-- ring
-- An example.
example (a b c : ℝ) : a * b * c = b * c * a := by
rw [mul_assoc a b c]
let b' := b * c
rw [mul_comm a b']
/- Try doing the first of these without providing any arguments at all,
and the second with only one argument. -/
example (a b c : ℝ) : a * (b * c) = b * (c * a) := by
let b' := b * c
rw[mul_comm a b']
rw[mul_assoc b c a]
--rw[mul_comm]
--rw[mul_assoc]
example (a b c : ℝ) : a * (b * c) = b * (a * c) := by
sorry
-- Using facts from the local context.
example (a b c d e f : ℝ) (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d * f) := by
rw [h']
rw [← mul_assoc]
rw [h]
rw [mul_assoc]
example (a b c d e f : ℝ) (h : b * c = e * f) : a * b * c * d = a * e * f * d := by
sorry
example (a b c d : ℝ) (hyp : c = b * a - d) (hyp' : d = a * b) : c = 0 := by
sorry
example (a b c d e f : ℝ) (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d * f) := by
rw [h', ← mul_assoc, h, mul_assoc]
section
variable (a b c d e f : ℝ)
example (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d * f) := by
rw [h', ← mul_assoc, h, mul_assoc]
end
section
variable (a b c : ℝ)
#check a
#check a + b
#check (a : ℝ)
#check mul_comm a b
#check (mul_comm a b : a * b = b * a)
#check mul_assoc c a b
#check mul_comm a
#check mul_comm
end
section
variable (a b : ℝ)
example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b := by
rw [mul_add, add_mul, add_mul]
rw [← add_assoc, add_assoc (a * a)]
rw [mul_comm b a, ← two_mul]
example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
(a + b) * (a + b) = a * a + b * a + (a * b + b * b) := by
rw [mul_add, add_mul, add_mul]
_ = a * a + (b * a + a * b) + b * b := by
rw [← add_assoc, add_assoc (a * a)]
_ = a * a + 2 * (a * b) + b * b := by
rw [mul_comm b a, ← two_mul]
example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
(a + b) * (a + b) = a * a + b * a + (a * b + b * b) := by
sorry
_ = a * a + (b * a + a * b) + b * b := by
sorry
_ = a * a + 2 * (a * b) + b * b := by
sorry
end
-- Try these. For the second, use the theorems listed underneath.
section
variable (a b c d : ℝ)
example : (a + b) * (c + d) = a * c + a * d + b * c + b * d := by
sorry
example (a b : ℝ) : (a + b) * (a - b) = a ^ 2 - b ^ 2 := by
sorry
#check pow_two a
#check mul_sub a b c
#check add_mul a b c
#check add_sub a b c
#check sub_sub a b c
#check add_zero a
end
-- Examples.
section
variable (a b c d : ℝ)
example (a b c d : ℝ) (hyp : c = d * a + b) (hyp' : b = a * d) : c = 2 * a * d := by
rw [hyp'] at hyp
rw [mul_comm d a] at hyp
rw [← two_mul (a * d)] at hyp
rw [← mul_assoc 2 a d] at hyp
exact hyp
example : c * b * a = b * (a * c) := by
ring
example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b := by
ring
example : (a + b) * (a - b) = a ^ 2 - b ^ 2 := by
ring
example (hyp : c = d * a + b) (hyp' : b = a * d) : c = 2 * a * d := by
rw [hyp, hyp']
ring
end
example (a b c : ℕ) (h : a + b = c) : (a + b) * (a + b) = a * c + b * c := by
nth_rw 2 [h]
rw [add_mul]