forked from pitmonticone/LeanInVienna2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS01_Structures.lean
229 lines (167 loc) · 4.79 KB
/
S01_Structures.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import LeanInVienna.Common
import Mathlib.Algebra.BigOperators.Ring
import Mathlib.Data.Real.Basic
namespace C06S01
noncomputable section
@[ext]
structure Point where
x : ℝ
y : ℝ
z : ℝ
inductive PointI' where
| mk (x y z : ℝ )
#check Point.ext
#check Point
#check Point.x
variable (p : Point)
#check p
#check p.x
#check p.y
example (a b : Point) (hx : a.x = b.x) (hy : a.y = b.y) (hz : a.z = b.z) : a = b := by
ext
repeat' assumption
def myPoint1 : Point where
x := 2
y := -1
z := 4
def myPoint2 : Point :=
⟨2, -1, 4⟩ -- anonymous constructor
-- Equivalent to the prev one
def myPoint3 :=
Point.mk 2 (-1) 4
structure Point' where build ::
x : ℝ
y : ℝ
z : ℝ
#check Point'.build 2 (-1) 4
namespace Point
def add (a b : Point) : Point :=
⟨a.x + b.x, a.y + b.y, a.z + b.z⟩ -- anon. constructor of Point
def add' (a b : Point) : Point where
x := a.x + b.x
y := a.y + b.y
z := a.z + b.z
#check add myPoint1 myPoint2
#check myPoint1.add myPoint2
end Point
#check Point.add myPoint1 myPoint2
#check myPoint1.add myPoint2
namespace Point
-- Prove commutativity of addition recursively
protected theorem add_comm (a b : Point) : add a b = add b a := by
rw [add, add]
ext <;> dsimp
repeat' apply add_comm
-- other version(?)
-- protected theorem add_comm' (a b : Point) : add a b = add b a := by
-- unfold add
-- ext <;> dsimp
-- repeat' apply add_comm'
-- quick proof using simp
example (a b : Point) : add a b = add b a := by simp [add, add_comm]
theorem add_x (a b : Point) : (a.add b).x = a.x + b.x :=
rfl
def addAlt : Point → Point → Point
| Point.mk x₁ y₁ z₁, Point.mk x₂ y₂ z₂ => ⟨x₁ + x₂, y₁ + y₂, z₁ + z₂⟩
def addAlt' : Point → Point → Point
| ⟨x₁, y₁, z₁⟩, ⟨x₂, y₂, z₂⟩ => ⟨x₁ + x₂, y₁ + y₂, z₁ + z₂⟩
theorem addAlt_x (a b : Point) : (a.addAlt b).x = a.x + b.x := by
rfl
theorem addAlt_comm (a b : Point) : addAlt a b = addAlt b a := by
rw [addAlt, addAlt]
-- the same proof still works, but the goal view here is harder to read
ext <;> dsimp
repeat' apply add_comm
protected theorem add_assoc (a b c : Point) : (a.add b).add c = a.add (b.add c) := by
sorry
def smul (r : ℝ) (a : Point) : Point :=
sorry
theorem smul_distrib (r : ℝ) (a b : Point) :
(smul r a).add (smul r b) = smul r (a.add b) := by
sorry
end Point
structure StandardTwoSimplex where
x : ℝ
y : ℝ
z : ℝ
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
z_nonneg : 0 ≤ z
sum_eq : x + y + z = 1
namespace StandardTwoSimplex
def swapXy (a : StandardTwoSimplex) : StandardTwoSimplex
where
x := a.y
y := a.x
z := a.z
x_nonneg := a.y_nonneg
y_nonneg := a.x_nonneg
z_nonneg := a.z_nonneg
sum_eq := by rw [add_comm a.y a.x, a.sum_eq]
noncomputable section
def midpoint (a b : StandardTwoSimplex) : StandardTwoSimplex
where
x := (a.x + b.x) / 2
y := (a.y + b.y) / 2
z := (a.z + b.z) / 2
x_nonneg := div_nonneg (add_nonneg a.x_nonneg b.x_nonneg) (by norm_num)
y_nonneg := div_nonneg (add_nonneg a.y_nonneg b.y_nonneg) (by norm_num)
z_nonneg := div_nonneg (add_nonneg a.z_nonneg b.z_nonneg) (by norm_num)
sum_eq := by field_simp; linarith [a.sum_eq, b.sum_eq]
def weightedAverage (lambda : Real) (lambda_nonneg : 0 ≤ lambda) (lambda_le : lambda ≤ 1)
(a b : StandardTwoSimplex) : StandardTwoSimplex :=
sorry
end
end StandardTwoSimplex
open BigOperators
structure StandardSimplex (n : ℕ) where
V : Fin n → ℝ
NonNeg : ∀ i : Fin n, 0 ≤ V i
sum_eq_one : (∑ i, V i) = 1
namespace StandardSimplex
def midpoint (n : ℕ) (a b : StandardSimplex n) : StandardSimplex n
where
V i := (a.V i + b.V i) / 2
NonNeg := by
intro i
apply div_nonneg
· linarith [a.NonNeg i, b.NonNeg i]
norm_num
sum_eq_one := by
simp [div_eq_mul_inv, ← Finset.sum_mul, Finset.sum_add_distrib,
a.sum_eq_one, b.sum_eq_one]
field_simp
end StandardSimplex
structure IsLinear (f : ℝ → ℝ) where
is_additive : ∀ x y, f (x + y) = f x + f y
preserves_mul : ∀ x c, f (c * x) = c * f x
section
variable (f : ℝ → ℝ) (linf : IsLinear f)
#check linf.is_additive
#check linf.preserves_mul
end
def Point'' :=
ℝ × ℝ × ℝ
def IsLinear' (f : ℝ → ℝ) :=
(∀ x y, f (x + y) = f x + f y) ∧ ∀ x c, f (c * x) = c * f x
def PReal :=
{ y : ℝ // 0 < y }
section
variable (x : PReal)
#check x.val
#check x.property
#check x.1
#check x.2
end
def StandardTwoSimplex' :=
{ p : ℝ × ℝ × ℝ // 0 ≤ p.1 ∧ 0 ≤ p.2.1 ∧ 0 ≤ p.2.2 ∧ p.1 + p.2.1 + p.2.2 = 1 }
def StandardSimplex' (n : ℕ) :=
{ v : Fin n → ℝ // (∀ i : Fin n, 0 ≤ v i) ∧ (∑ i, v i) = 1 }
def StdSimplex := Σ n : ℕ, StandardSimplex n
section
variable (s : StdSimplex)
#check s.fst
#check s.snd
#check s.1
#check s.2
end