-
-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathtrain_text_localizer.py
executable file
·85 lines (64 loc) · 2.69 KB
/
train_text_localizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/python
import letter
import text
import layer
import numpy as np
# layer.clear_tensorboard() # Get rid of old runs
# data = text.batch(text.Target.position, batch_size=10)
data = text.batch(text.Target.position_hot, batch_size=10)
# input_width = 300 #data.shape[0]
input_shape=[text.canvas_size, text.canvas_size]
output_shape = [text.canvas_size, 2] # one hot encoding for (x,y) position of text ~ upper right boundary box corner
# output_shape = 2 # (x,y) todo: one hot encoding INSIDE net!
# print(data.train.images[0].shape)
x,y = next(data)
print(np.array(x).shape)
print(np.array(y).shape)
# exit(0)
# learning_rate = 0.03 # divergence even on overfit
# learning_rate = 0.003 # quicker overfit
learning_rate = 0.0003
training_steps = 500000
# batch_size = 64
batch_size = 10
size = text.canvas_size
data_format={
'input_width': size,
'output_width': output_shape, # x,y position
# output_width: 4, # x,y start+end position (box)
}
def positionGanglion(net):
# type: (layer.net) -> None
print("Building start position detecting ganglion")
net.input([300,300])
net.reshape(shape=[-1, size, size, letter.color_channels]) # Reshape input picture
# net.buildDenseConv(nBlocks=1)
net.conv2d(20, pool=False)
net.conv2d(1, pool=False) # hopefully the heat map activation can learn the start position of our word :
net.targets([300,2]) # reduce-max per axis
net.argmax_2D_loss()
# net.classifier(dim=2)
def positionRegression(net):
# type: (layer.net) -> None
print("Building start position detecting ganglion")
net.reshape(shape=[-1, size, size, letter.color_channels]) # Reshape input picture
# net.buildDenseConv(nBlocks=1)
net.conv2d(20)
net.argmax2d()
net.regression(dimensions=2) # for
def denseConv(net):
# type: (layer.net) -> None
print("Building dense-net")
net.reshape(shape=[-1, size, size, letter.color_channels]) # Reshape input picture
net.buildDenseConv(nBlocks=1)
""" Baseline tests to see that your model doesn't have any bugs and can learn small test sites without efforts """
# net = layer.net(layer.baseline, input_width=size, output_width=nClasses, learning_rate=learning_rate)
# net.train(data=data, test_step=1000) # run
""" here comes the real network """
# net = layer.net(denseConv, input_width=size, output_width=2, learning_rate=learning_rate)
net = layer.net(positionGanglion, input_width=size, output_width=output_shape, learning_rate=learning_rate)
# net.train(data=data,steps=50000,dropout=0.6,display_step=1,test_step=1) # debug
# net.train(data=data, steps=training_steps,dropout=0.6,display_step=5,test_step=20) # test
net.train(data=data, dropout=.6, display_step=5, test_step=100) # run resume
# net.predict() # nil=random
# net.generate(3) # nil=random