Skip to content

Latest commit

 

History

History
36 lines (25 loc) · 622 Bytes

README.md

File metadata and controls

36 lines (25 loc) · 622 Bytes

Global feature matching via DBoW2

  • uses KITTI dataset
  • detects ORB features from 5 images
  • Creates vocabulary tree using DBoW2
  • Matches features from 5 images using DBoW2

How to build & run

Requirement: OpenCV4, DBoW2

(DBoW3, FBoW can be used as well - but API will be slightly different)

Local build

mkdir build && cd build
cmake ..
make -j
./bow_matching

Docker build

Requires base build

docker build . -t slam:3_5
docker run -it --env DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix:ro slam:3_5

# Inside docker container
cd fastcampus_slam_codes/3_5
./build/bow_matching