From 9c5d610988ad257061a18e3cd0e45d4176ceab8b Mon Sep 17 00:00:00 2001 From: parthmannan <38387286+parthmannan@users.noreply.github.com> Date: Thu, 19 Jan 2023 23:04:25 -0800 Subject: [PATCH 1/2] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 6708124..e1e1d0b 100644 --- a/README.md +++ b/README.md @@ -82,4 +82,4 @@ edge_shapes = [nx_g.edges[x]['shape'] for x in nx.edge_bfs(nx_g, source=source_n 2. Graph drawing of the extracted graph Example below -![Example Graph][examples/fx_graph_extracted_id_count(1).png] +![Example Graph](examples/fx_graph_extracted_id_count(1).png) From e0beab51ccf5d7f4e75abbc85dbe91b6b48e8926 Mon Sep 17 00:00:00 2001 From: parthmannan <38387286+parthmannan@users.noreply.github.com> Date: Thu, 19 Jan 2023 23:05:36 -0800 Subject: [PATCH 2/2] Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index e1e1d0b..ed4dd0d 100644 --- a/README.md +++ b/README.md @@ -12,6 +12,7 @@ torch.compile(net, backend='nvprims_nvfuser') ``` I am using `nvprims_nvfuser` backend here to get FX Graph with higher level semantics. You can use TorchInductor (default backend) and you'll get a graph with lower level ops. For example, Softmax would be broken down into primitive ops. Though I don't anticipate any issues, this code has not been tested with TorchInductor. + 3. Install pydot package ``` pip install pydot