forked from KitronikLtd/micropython-rp2-webusb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadc.c
979 lines (860 loc) · 35.8 KB
/
adc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/mphal.h"
#include "adc.h"
#include "pin.h"
#include "timer.h"
#if MICROPY_HW_ENABLE_ADC
/// \moduleref pyb
/// \class ADC - analog to digital conversion: read analog values on a pin
///
/// Usage:
///
/// adc = pyb.ADC(pin) # create an analog object from a pin
/// val = adc.read() # read an analog value
///
/// adc = pyb.ADCAll(resolution) # creale an ADCAll object
/// val = adc.read_channel(channel) # read the given channel
/// val = adc.read_core_temp() # read MCU temperature
/// val = adc.read_core_vbat() # read MCU VBAT
/// val = adc.read_core_vref() # read MCU VREF
/* ADC definitions */
#define ADCx (ADC1)
#define PIN_ADC_MASK PIN_ADC1
#define pin_adc_table pin_adc1
#if defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || \
defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
#define ADCALLx (ADC2)
#define pin_adcall_table pin_adc2
#elif defined(STM32H7)
// On the H7 ADC3 is used for ADCAll to be able to read internal
// channels. For all other GPIO channels, ADC12 is used instead.
#define ADCALLx (ADC3)
#define pin_adcall_table pin_adc3
#else
// Use ADC1 for ADCAll instance by default for all other MCUs.
#define ADCALLx (ADC1)
#define pin_adcall_table pin_adc1
#endif
#define ADCx_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE
#if defined(STM32F0)
#define ADC_SCALE_V (3.3f)
#define ADC_CAL_ADDRESS (0x1ffff7ba)
#define ADC_CAL1 ((uint16_t *)0x1ffff7b8)
#define ADC_CAL2 ((uint16_t *)0x1ffff7c2)
#define ADC_CAL_BITS (12)
#elif defined(STM32F4)
#define ADC_SCALE_V (3.3f)
#define ADC_CAL_ADDRESS (0x1fff7a2a)
#define ADC_CAL1 ((uint16_t *)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t *)(ADC_CAL_ADDRESS + 4))
#define ADC_CAL_BITS (12)
#elif defined(STM32F7)
#define ADC_SCALE_V (3.3f)
#if defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx)
#define ADC_CAL_ADDRESS (0x1ff07a2a)
#else
#define ADC_CAL_ADDRESS (0x1ff0f44a)
#endif
#define ADC_CAL1 ((uint16_t *)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t *)(ADC_CAL_ADDRESS + 4))
#define ADC_CAL_BITS (12)
#elif defined(STM32G0) || defined(STM32G4)
#define ADC_SCALE_V (((float)VREFINT_CAL_VREF) / 1000.0f)
#define ADC_CAL_ADDRESS VREFINT_CAL_ADDR
#define ADC_CAL1 TEMPSENSOR_CAL1_ADDR
#define ADC_CAL2 TEMPSENSOR_CAL2_ADDR
#define ADC_CAL_BITS (12) // UM2319/UM2570, __HAL_ADC_CALC_TEMPERATURE: 'corresponds to a resolution of 12 bits'
#elif defined(STM32H7)
#define ADC_SCALE_V (3.3f)
#define ADC_CAL_ADDRESS (0x1FF1E860)
#define ADC_CAL1 ((uint16_t *)(0x1FF1E820))
#define ADC_CAL2 ((uint16_t *)(0x1FF1E840))
#define ADC_CAL_BITS (16)
#elif defined(STM32L1)
#define ADC_SCALE_V (VREFINT_CAL_VREF / 1000.0f)
#define ADC_CAL_ADDRESS (VREFINT_CAL_ADDR)
#define ADC_CAL1 (TEMPSENSOR_CAL1_ADDR)
#define ADC_CAL2 (TEMPSENSOR_CAL2_ADDR)
#define ADC_CAL_BITS (12)
#elif defined(STM32L4) || defined(STM32WB)
#define ADC_SCALE_V (VREFINT_CAL_VREF / 1000.0f)
#define ADC_CAL_ADDRESS (VREFINT_CAL_ADDR)
#define ADC_CAL1 (TEMPSENSOR_CAL1_ADDR)
#define ADC_CAL2 (TEMPSENSOR_CAL2_ADDR)
#define ADC_CAL_BITS (12)
#else
#error Unsupported processor
#endif
#if defined(STM32F091xC)
#define VBAT_DIV (2)
#elif defined(STM32F405xx) || defined(STM32F415xx) || \
defined(STM32F407xx) || defined(STM32F417xx) || \
defined(STM32F401xC) || defined(STM32F401xE)
#define VBAT_DIV (2)
#elif defined(STM32F411xE) || defined(STM32F412Zx) || \
defined(STM32F413xx) || defined(STM32F427xx) || \
defined(STM32F429xx) || defined(STM32F437xx) || \
defined(STM32F439xx) || defined(STM32F446xx) || \
defined(STM32F479xx)
#define VBAT_DIV (4)
#elif defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx) || \
defined(STM32F745xx) || defined(STM32F746xx) || \
defined(STM32F756xx) || defined(STM32F765xx) || \
defined(STM32F767xx) || defined(STM32F769xx)
#define VBAT_DIV (4)
#elif defined(STM32G0) || defined(STM32G4)
#define VBAT_DIV (3)
#elif defined(STM32H723xx) || defined(STM32H733xx) || \
defined(STM32H743xx) || defined(STM32H747xx) || \
defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || \
defined(STM32H7B3xx) || defined(STM32H7B3xxQ) || \
defined(STM32H750xx)
#define VBAT_DIV (4)
#elif defined(STM32L432xx) || \
defined(STM32L451xx) || defined(STM32L452xx) || \
defined(STM32L462xx) || defined(STM32L475xx) || \
defined(STM32L476xx) || defined(STM32L496xx) || \
defined(STM32WB55xx)
#define VBAT_DIV (3)
#elif defined(STM32L152xE)
// STM32L152xE does not have vbat.
#else
#error Unsupported processor
#endif
// Timeout for waiting for end-of-conversion, in ms
#define EOC_TIMEOUT (10)
/* Core temperature sensor definitions */
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resolution) */
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resolution) */
// scale and calibration values for VBAT and VREF
#define ADC_SCALE (ADC_SCALE_V / ((1 << ADC_CAL_BITS) - 1))
#define VREFIN_CAL ((uint16_t *)ADC_CAL_ADDRESS)
#ifndef __HAL_ADC_IS_CHANNEL_INTERNAL
#if defined(STM32L1)
#define __HAL_ADC_IS_CHANNEL_INTERNAL(channel) \
(channel == ADC_CHANNEL_VREFINT \
|| channel == ADC_CHANNEL_TEMPSENSOR)
#else
#define __HAL_ADC_IS_CHANNEL_INTERNAL(channel) \
(channel == ADC_CHANNEL_VBAT \
|| channel == ADC_CHANNEL_VREFINT \
|| channel == ADC_CHANNEL_TEMPSENSOR)
#endif
#endif
typedef struct _pyb_obj_adc_t {
mp_obj_base_t base;
mp_obj_t pin_name;
uint32_t channel;
ADC_HandleTypeDef handle;
} pyb_obj_adc_t;
// convert user-facing channel number into internal channel number
static inline uint32_t adc_get_internal_channel(uint32_t channel) {
#if defined(STM32F4) || defined(STM32F7)
// on F4 and F7 MCUs we want channel 16 to always be the TEMPSENSOR
// (on some MCUs ADC_CHANNEL_TEMPSENSOR=16, on others it doesn't)
if (channel == 16) {
channel = ADC_CHANNEL_TEMPSENSOR;
}
#elif defined(STM32L4)
if (channel == 0) {
channel = ADC_CHANNEL_VREFINT;
} else if (channel == 17) {
channel = ADC_CHANNEL_TEMPSENSOR;
} else if (channel == 18) {
channel = ADC_CHANNEL_VBAT;
}
#endif
return channel;
}
STATIC bool is_adcx_channel(int channel) {
#if defined(STM32F411xE)
// The HAL has an incorrect IS_ADC_CHANNEL macro for the F411 so we check for temp
return IS_ADC_CHANNEL(channel) || channel == ADC_CHANNEL_TEMPSENSOR;
#elif defined(STM32F0) || defined(STM32F4) || defined(STM32F7)
return IS_ADC_CHANNEL(channel);
#elif defined(STM32L1)
// The HAL of STM32L1 defines some channels those may not be available on package
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| (channel < MP_ARRAY_SIZE(pin_adcall_table) && pin_adcall_table[channel]);
#elif defined(STM32G0) || defined(STM32H7)
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| IS_ADC_CHANNEL(__HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel));
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
ADC_HandleTypeDef handle;
handle.Instance = ADCx;
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| IS_ADC_CHANNEL(&handle, __HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel));
#else
#error Unsupported processor
#endif
}
STATIC void adc_wait_for_eoc_or_timeout(ADC_HandleTypeDef *adcHandle, int32_t timeout) {
uint32_t tickstart = HAL_GetTick();
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
while ((adcHandle->Instance->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
while (READ_BIT(adcHandle->Instance->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#else
#error Unsupported processor
#endif
if (((HAL_GetTick() - tickstart) > timeout)) {
break; // timeout
}
}
}
STATIC void adcx_clock_enable(ADC_HandleTypeDef *adch) {
#if defined(STM32F0) || defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
ADCx_CLK_ENABLE();
#elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
__HAL_RCC_ADC12_CLK_ENABLE();
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
#elif defined(STM32G0)
__HAL_RCC_ADC_CLK_ENABLE();
#elif defined(STM32G4)
__HAL_RCC_ADC12_CLK_ENABLE();
#elif defined(STM32H7)
if (adch->Instance == ADC3) {
__HAL_RCC_ADC3_CLK_ENABLE();
} else {
__HAL_RCC_ADC12_CLK_ENABLE();
}
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
#elif defined(STM32L4) || defined(STM32WB)
if (__HAL_RCC_GET_ADC_SOURCE() == RCC_ADCCLKSOURCE_NONE) {
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
}
__HAL_RCC_ADC_CLK_ENABLE();
#else
#error Unsupported processor
#endif
}
STATIC void adcx_init_periph(ADC_HandleTypeDef *adch, uint32_t resolution) {
adcx_clock_enable(adch);
adch->Init.Resolution = resolution;
adch->Init.ContinuousConvMode = DISABLE;
adch->Init.DiscontinuousConvMode = DISABLE;
#if !defined(STM32F0) && !defined(STM32G0)
adch->Init.NbrOfDiscConversion = 0;
#endif
#if !defined(STM32F0)
adch->Init.NbrOfConversion = 1;
#endif
adch->Init.EOCSelection = ADC_EOC_SINGLE_CONV;
adch->Init.ExternalTrigConv = ADC_SOFTWARE_START;
adch->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
#if defined(STM32F0)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; // 12MHz
adch->Init.ScanConvMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
adch->Init.SamplingTimeCommon = ADC_SAMPLETIME_55CYCLES_5; // ~4uS
#elif defined(STM32F4) || defined(STM32F7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
adch->Init.ScanConvMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#elif defined(STM32H7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
adch->Init.ScanConvMode = DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
adch->Init.OversamplingMode = DISABLE;
adch->Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
adch->Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
#elif defined(STM32L1)
adch->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adch->Init.ScanConvMode = ADC_SCAN_DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
adch->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adch->Init.ScanConvMode = ADC_SCAN_DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_PRESERVED;
adch->Init.OversamplingMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#else
#error Unsupported processor
#endif
HAL_ADC_Init(adch);
#if defined(STM32H7)
HAL_ADCEx_Calibration_Start(adch, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
#endif
#if defined(STM32G0)
HAL_ADCEx_Calibration_Start(adch);
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
HAL_ADCEx_Calibration_Start(adch, ADC_SINGLE_ENDED);
#endif
}
STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) {
adc_obj->handle.Instance = ADCx;
adcx_init_periph(&adc_obj->handle, ADC_RESOLUTION_12B);
#if (defined(STM32G4) || defined(STM32L4)) && defined(ADC_DUALMODE_REGSIMULT_INJECSIMULT)
ADC_MultiModeTypeDef multimode;
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&adc_obj->handle, &multimode) != HAL_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Can not set multimode on ADC1 channel: %d"), adc_obj->channel);
}
#endif
}
STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) {
ADC_ChannelConfTypeDef sConfig;
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
sConfig.Rank = ADC_REGULAR_RANK_1;
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel) == 0) {
channel = __HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel);
}
#else
sConfig.Rank = 1;
#endif
sConfig.Channel = channel;
#if defined(STM32F0)
sConfig.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
#elif defined(STM32F4) || defined(STM32F7)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
}
#elif defined(STM32H7)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
}
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.OffsetRightShift = DISABLE;
sConfig.OffsetSignedSaturation = DISABLE;
#elif defined(STM32L1)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
}
#elif defined(STM32G0)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_160CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
}
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
}
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
#else
#error Unsupported processor
#endif
#if defined(STM32F0)
// On the STM32F0 we must select only one channel at a time to sample, so clear all
// channels before calling HAL_ADC_ConfigChannel, which will select the desired one.
adc_handle->Instance->CHSELR = 0;
#endif
HAL_ADC_ConfigChannel(adc_handle, &sConfig);
}
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
HAL_ADC_Start(adcHandle);
adc_wait_for_eoc_or_timeout(adcHandle, EOC_TIMEOUT);
uint32_t value = adcHandle->Instance->DR;
HAL_ADC_Stop(adcHandle);
return value;
}
STATIC uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
adc_config_channel(adcHandle, channel);
uint32_t raw_value = adc_read_channel(adcHandle);
// ST docs say that (at least on STM32F42x and STM32F43x), VBATE must
// be disabled when TSVREFE is enabled for TEMPSENSOR and VREFINT
// conversions to work. VBATE is enabled by the above call to read
// the channel, and here we disable VBATE so a subsequent call for
// TEMPSENSOR or VREFINT works correctly.
// It's also good to disable the VBAT switch to prevent battery drain,
// so disable it for all MCUs.
adc_deselect_vbat(adcHandle->Instance, channel);
return raw_value;
}
/******************************************************************************/
/* MicroPython bindings : adc object (single channel) */
STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
mp_print_str(print, "<ADC on ");
mp_obj_print_helper(print, self->pin_name, PRINT_STR);
mp_printf(print, " channel=%u>", self->channel);
}
/// \classmethod \constructor(pin)
/// Create an ADC object associated with the given pin.
/// This allows you to then read analog values on that pin.
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// 1st argument is the pin name
mp_obj_t pin_obj = args[0];
uint32_t channel;
if (mp_obj_is_int(pin_obj)) {
channel = adc_get_internal_channel(mp_obj_get_int(pin_obj));
} else {
const pin_obj_t *pin = pin_find(pin_obj);
if ((pin->adc_num & PIN_ADC_MASK) == 0) {
// No ADC function on the given pin.
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have ADC capabilities"), pin->name);
}
channel = pin->adc_channel;
}
if (!is_adcx_channel(channel)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("not a valid ADC Channel: %d"), channel);
}
// If this channel corresponds to a pin then configure the pin in ADC mode.
if (channel < MP_ARRAY_SIZE(pin_adc_table)) {
const pin_obj_t *pin = pin_adc_table[channel];
if (pin != NULL) {
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
}
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
memset(o, 0, sizeof(*o));
o->base.type = &pyb_adc_type;
o->pin_name = pin_obj;
o->channel = channel;
adc_init_single(o);
return MP_OBJ_FROM_PTR(o);
}
/// \method read()
/// Read the value on the analog pin and return it. The returned value
/// will be between 0 and 4095.
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(adc_config_and_read_channel(&self->handle, self->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
/// \method read_timed(buf, timer)
///
/// Read analog values into `buf` at a rate set by the `timer` object.
///
/// `buf` can be bytearray or array.array for example. The ADC values have
/// 12-bit resolution and are stored directly into `buf` if its element size is
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
/// the sample resolution will be reduced to 8 bits.
///
/// `timer` should be a Timer object, and a sample is read each time the timer
/// triggers. The timer must already be initialised and running at the desired
/// sampling frequency.
///
/// To support previous behaviour of this function, `timer` can also be an
/// integer which specifies the frequency (in Hz) to sample at. In this case
/// Timer(6) will be automatically configured to run at the given frequency.
///
/// Example using a Timer object (preferred way):
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
/// buf = bytearray(100) # creat a buffer to store the samples
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
///
/// Example using an integer for the frequency:
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// buf = bytearray(100) # create a buffer of 100 bytes
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
/// # this will take 10 seconds to finish
/// for val in buf: # loop over all values
/// print(val) # print the value out
///
/// This function does not allocate any memory.
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
TIM_HandleTypeDef *tim;
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// freq in Hz given so init TIM6 (legacy behaviour)
tim = timer_tim6_init(mp_obj_get_int(freq_in));
HAL_TIM_Base_Start(tim);
} else
#endif
{
// use the supplied timer object as the sampling time base
tim = pyb_timer_get_handle(freq_in);
}
// configure the ADC channel
adc_config_channel(&self->handle, self->channel);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
uint nelems = bufinfo.len / typesize;
for (uint index = 0; index < nelems; index++) {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
if (index == 0) {
// for the first sample we need to turn the ADC on
HAL_ADC_Start(&self->handle);
} else {
// for subsequent samples we can just set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
self->handle.Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
SET_BIT(self->handle.Instance->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
}
// wait for sample to complete
adc_wait_for_eoc_or_timeout(&self->handle, EOC_TIMEOUT);
// read value
uint value = self->handle.Instance->DR;
// store value in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
}
// turn the ADC off
HAL_ADC_Stop(&self->handle);
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// stop timer if we initialised TIM6 in this function (legacy behaviour)
HAL_TIM_Base_Stop(tim);
}
#endif
return mp_obj_new_int(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
// read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
//
// Read analog values from multiple ADC's into buffers at a rate set by the
// timer. The ADC values have 12-bit resolution and are stored directly into
// the corresponding buffer if its element size is 16 bits or greater, otherwise
// the sample resolution will be reduced to 8 bits.
//
// This function should not allocate any heap memory.
STATIC mp_obj_t adc_read_timed_multi(mp_obj_t adc_array_in, mp_obj_t buf_array_in, mp_obj_t tim_in) {
size_t nadcs, nbufs;
mp_obj_t *adc_array, *buf_array;
mp_obj_get_array(adc_array_in, &nadcs, &adc_array);
mp_obj_get_array(buf_array_in, &nbufs, &buf_array);
if (nadcs < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("need at least 1 ADC"));
}
if (nadcs != nbufs) {
mp_raise_ValueError(MP_ERROR_TEXT("length of ADC and buffer lists differ"));
}
// Get buf for first ADC, get word size, check other buffers match in type
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_array[0], &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
void *bufptrs[nbufs];
for (uint array_index = 0; array_index < nbufs; array_index++) {
mp_buffer_info_t bufinfo_curr;
mp_get_buffer_raise(buf_array[array_index], &bufinfo_curr, MP_BUFFER_WRITE);
if ((bufinfo.len != bufinfo_curr.len) || (bufinfo.typecode != bufinfo_curr.typecode)) {
mp_raise_ValueError(MP_ERROR_TEXT("size and type of buffers must match"));
}
bufptrs[array_index] = bufinfo_curr.buf;
}
// Use the supplied timer object as the sampling time base
TIM_HandleTypeDef *tim;
tim = pyb_timer_get_handle(tim_in);
// Start adc; this is slow so wait for it to start
pyb_obj_adc_t *adc0 = MP_OBJ_TO_PTR(adc_array[0]);
adc_config_channel(&adc0->handle, adc0->channel);
HAL_ADC_Start(&adc0->handle);
// Wait for sample to complete and discard
adc_wait_for_eoc_or_timeout(&adc0->handle, EOC_TIMEOUT);
// Read (and discard) value
uint value = adc0->handle.Instance->DR;
// Ensure first sample is on a timer tick
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
// Overrun check: assume success
bool success = true;
size_t nelems = bufinfo.len / typesize;
for (size_t elem_index = 0; elem_index < nelems; elem_index++) {
if (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) != RESET) {
// Timer has already triggered
success = false;
} else {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
for (size_t array_index = 0; array_index < nadcs; array_index++) {
pyb_obj_adc_t *adc = MP_OBJ_TO_PTR(adc_array[array_index]);
// configure the ADC channel
adc_config_channel(&adc->handle, adc->channel);
// for the first sample we need to turn the ADC on
// ADC is started: set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
adc->handle.Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
SET_BIT(adc->handle.Instance->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
// wait for sample to complete
adc_wait_for_eoc_or_timeout(&adc->handle, EOC_TIMEOUT);
// read value
value = adc->handle.Instance->DR;
// store values in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufptrs[array_index], elem_index, value);
}
}
// Turn the ADC off
adc0 = MP_OBJ_TO_PTR(adc_array[0]);
HAL_ADC_Stop(&adc0->handle);
return mp_obj_new_bool(success);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_multi_fun_obj, adc_read_timed_multi);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(adc_read_timed_multi_obj, MP_ROM_PTR(&adc_read_timed_multi_fun_obj));
STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&adc_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed), MP_ROM_PTR(&adc_read_timed_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed_multi), MP_ROM_PTR(&adc_read_timed_multi_obj) },
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_adc_type,
MP_QSTR_ADC,
MP_TYPE_FLAG_NONE,
make_new, adc_make_new,
print, adc_print,
locals_dict, &adc_locals_dict
);
/******************************************************************************/
/* adc all object */
typedef struct _pyb_adc_all_obj_t {
mp_obj_base_t base;
ADC_HandleTypeDef handle;
} pyb_adc_all_obj_t;
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle);
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) {
switch (resolution) {
#if !defined(STM32H7)
case 6:
resolution = ADC_RESOLUTION_6B;
break;
#endif
case 8:
resolution = ADC_RESOLUTION_8B;
break;
case 10:
resolution = ADC_RESOLUTION_10B;
break;
case 12:
resolution = ADC_RESOLUTION_12B;
break;
#if defined(STM32H7)
case 16:
resolution = ADC_RESOLUTION_16B;
break;
#endif
default:
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("resolution %d not supported"), resolution);
}
for (uint32_t channel = 0; channel < MP_ARRAY_SIZE(pin_adcall_table); ++channel) {
// only initialise those channels that are selected with the en_mask
if (en_mask & (1 << channel)) {
// If this channel corresponds to a pin then configure the pin in ADC mode.
const pin_obj_t *pin = pin_adcall_table[channel];
if (pin) {
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
}
}
adc_all->handle.Instance = ADCALLx;
adcx_init_periph(&adc_all->handle, resolution);
}
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32L1)
uint32_t res_reg = adcHandle->Instance->CR1 & ADC_CR1_RES_Msk;
#else
uint32_t res_reg = ADC_GET_RESOLUTION(adcHandle);
#endif
switch (res_reg) {
#if !defined(STM32H7)
case ADC_RESOLUTION_6B:
return 6;
#endif
case ADC_RESOLUTION_8B:
return 8;
case ADC_RESOLUTION_10B:
return 10;
#if defined(STM32H7)
case ADC_RESOLUTION_16B:
return 16;
#endif
}
return 12;
}
STATIC uint32_t adc_config_and_read_ref(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, channel);
// Scale raw reading to the number of bits used by the calibration constants
return raw_value << (ADC_CAL_BITS - adc_get_resolution(adcHandle));
}
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32G4)
int32_t raw_value = 0;
if (adcHandle->Instance == ADC1) {
raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR_ADC1);
} else {
return 0;
}
#else
int32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR);
#endif
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
}
#if MICROPY_PY_BUILTINS_FLOAT
// correction factor for reference value
STATIC volatile float adc_refcor = 1.0f;
float adc_read_core_temp_float(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32G4)
int32_t raw_value = 0;
if (adcHandle->Instance == ADC1) {
raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR_ADC1);
} else {
return 0;
}
#else
#if defined(STM32L1) || defined(STM32L4)
// Update the reference correction factor before reading tempsensor
// because TS_CAL1 and TS_CAL2 of STM32L1/L4 are at VDDA=3.0V
adc_read_core_vref(adcHandle);
#endif
int32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR);
#endif
float core_temp_avg_slope = (*ADC_CAL2 - *ADC_CAL1) / 80.0f;
return (((float)raw_value * adc_refcor - *ADC_CAL1) / core_temp_avg_slope) + 30.0f;
}
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32L152xE)
mp_raise_NotImplementedError(MP_ERROR_TEXT("read_core_vbat not supported"));
#else
uint32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_VBAT);
return raw_value * VBAT_DIV * ADC_SCALE * adc_refcor;
#endif
}
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_VREFINT);
// update the reference correction factor
adc_refcor = ((float)(*VREFIN_CAL)) / ((float)raw_value);
return (*VREFIN_CAL) * ADC_SCALE;
}
#endif
/******************************************************************************/
/* MicroPython bindings : adc_all object */
STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 2, false);
// make ADCAll object
pyb_adc_all_obj_t *o = mp_obj_malloc(pyb_adc_all_obj_t, &pyb_adc_all_type);
mp_int_t res = mp_obj_get_int(args[0]);
uint32_t en_mask = 0xffffffff;
if (n_args > 1) {
en_mask = mp_obj_get_int(args[1]);
}
adc_init_all(o, res, en_mask);
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t chan = adc_get_internal_channel(mp_obj_get_int(channel));
if (!is_adcx_channel(chan)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("not a valid ADC Channel: %d"), chan);
}
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
#if MICROPY_PY_BUILTINS_FLOAT
float data = adc_read_core_temp_float(&self->handle);
return mp_obj_new_float(data);
#else
int data = adc_read_core_temp(&self->handle);
return mp_obj_new_int(data);
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
#if MICROPY_PY_BUILTINS_FLOAT
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
float data = adc_read_core_vbat(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
float data = adc_read_core_vref(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
STATIC mp_obj_t adc_all_read_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
adc_read_core_vref(&self->handle);
return mp_obj_new_float(ADC_SCALE_V * adc_refcor);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_vref_obj, adc_all_read_vref);
#endif
STATIC const mp_rom_map_elem_t adc_all_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_channel), MP_ROM_PTR(&adc_all_read_channel_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_temp), MP_ROM_PTR(&adc_all_read_core_temp_obj) },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_ROM_QSTR(MP_QSTR_read_core_vbat), MP_ROM_PTR(&adc_all_read_core_vbat_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_vref), MP_ROM_PTR(&adc_all_read_core_vref_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_vref), MP_ROM_PTR(&adc_all_read_vref_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_adc_all_type,
MP_QSTR_ADCAll,
MP_TYPE_FLAG_NONE,
make_new, adc_all_make_new,
locals_dict, &adc_all_locals_dict
);
#endif // MICROPY_HW_ENABLE_ADC