-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paththompson_decision.py
executable file
·40 lines (37 loc) · 1.44 KB
/
thompson_decision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python2
import argparse
import matplotlib.pyplot as plt
import peeking.algorithm
import peeking.concurrent
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('A', type=float)
parser.add_argument('B', type=float)
parser.add_argument('--output')
parser.add_argument('--p-value', required=True, type=float)
parser.add_argument('--min-sample-size', required=True, type=int)
parser.add_argument('--sample-size', required=True, type=int)
parser.add_argument('--runs', required=True, type=int)
args = parser.parse_args()
algorithm = peeking.algorithm.PeekingThompson((args.A, args.B), args.p_value, (1, 1), args.min_sample_size)
accept = [[], []]
with peeking.concurrent.run(algorithm.decision, args.runs, ((args.sample_size,),)) as results:
for r in results:
if r:
winner, i = r
accept[winner].append(i)
plt.title('A = {:.2f}, B = {:.2f}'.format(args.A, args.B))
for label, a in zip(('A', 'B'), accept):
a.sort()
x = a + [args.sample_size]
y = [float(y + 1) / args.runs for y in xrange(len(a))] + [float(len(a)) / args.runs]
plt.plot(x, y, label=label)
plt.xlabel('samples')
plt.xlim((0, args.sample_size))
plt.ylabel('cummulative probability')
plt.ylim((0, 1))
plt.legend(loc='upper left')
if args.output:
plt.savefig(args.output)
else:
plt.show()