-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
97 lines (78 loc) · 3.9 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import subprocess
from pathlib import Path
import numpy as np
from skimage.io import imsave, imread
from tqdm import tqdm
from dataset.database import parse_database_name, get_ref_point_cloud
from estimator import name2estimator
from eval import visualize_intermediate_results
from prepare import video2image
from utils.base_utils import load_cfg, project_points
from utils.draw_utils import pts_range_to_bbox_pts, draw_bbox_3d
from utils.pose_utils import pnp
def weighted_pts(pts_list, weight_num=10, std_inv=10):
weights=np.exp(-(np.arange(weight_num)/std_inv)**2)[::-1] # wn
pose_num=len(pts_list)
if pose_num<weight_num:
weights = weights[-pose_num:]
else:
pts_list = pts_list[-weight_num:]
pts = np.sum(np.asarray(pts_list) * weights[:,None,None],0)/np.sum(weights)
return pts
def main(args):
cfg = load_cfg(args.cfg)
ref_database = parse_database_name(args.database)
estimator = name2estimator[cfg['type']](cfg)
estimator.build(ref_database, split_type='all')
object_pts = get_ref_point_cloud(ref_database)
object_bbox_3d = pts_range_to_bbox_pts(np.max(object_pts,0), np.min(object_pts,0))
output_dir = Path(args.output)
output_dir.mkdir(exist_ok=True, parents=True)
(output_dir / 'images_raw').mkdir(exist_ok=True, parents=True)
(output_dir / 'images_out').mkdir(exist_ok=True, parents=True)
(output_dir / 'images_inter').mkdir(exist_ok=True, parents=True)
(output_dir / 'images_out_smooth').mkdir(exist_ok=True, parents=True)
que_num = video2image(args.video, output_dir/'images_raw', 1, args.resolution, args.transpose)
pose_init = None
hist_pts = []
for que_id in tqdm(range(que_num)):
img = imread(str(output_dir/'images_raw'/f'frame{que_id}.jpg'))
# generate a pseudo K
h, w, _ = img.shape
f=np.sqrt(h**2+w**2)
K = np.asarray([[f,0,w/2],[0,f,h/2],[0,0,1]],np.float32)
if pose_init is not None:
estimator.cfg['refine_iter'] = 1 # we only refine one time after initialization
pose_pr, inter_results = estimator.predict(img, K, pose_init=pose_init)
pose_init = pose_pr
pts, _ = project_points(object_bbox_3d, pose_pr, K)
bbox_img = draw_bbox_3d(img, pts, (0,0,255))
imsave(f'{str(output_dir)}/images_out/{que_id}-bbox.jpg', bbox_img)
np.save(f'{str(output_dir)}/images_out/{que_id}-pose.npy', pose_pr)
imsave(f'{str(output_dir)}/images_inter/{que_id}.jpg', visualize_intermediate_results(img, K, inter_results, estimator.ref_info, object_bbox_3d))
hist_pts.append(pts)
pts_ = weighted_pts(hist_pts, weight_num=args.num, std_inv=args.std)
pose_ = pnp(object_bbox_3d, pts_, K)
pts__, _ = project_points(object_bbox_3d, pose_, K)
bbox_img_ = draw_bbox_3d(img, pts__, (0,0,255))
imsave(f'{str(output_dir)}/images_out_smooth/{que_id}-bbox.jpg', bbox_img_)
cmd=[args.ffmpeg, '-y', '-framerate','30', '-r', '30',
'-i', f'{output_dir}/images_out_smooth/%d-bbox.jpg',
'-c:v', 'libx264','-pix_fmt','yuv420p', f'{output_dir}/video.mp4']
subprocess.run(cmd)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='configs/gen6d_pretrain.yaml')
parser.add_argument('--database', type=str, default="custom/mouse")
parser.add_argument('--output', type=str, default="data/custom/mouse/test")
# input video process
parser.add_argument('--video', type=str, default="data/custom/video/mouse-test.mp4")
parser.add_argument('--resolution', type=int, default=960)
parser.add_argument('--transpose', action='store_true', dest='transpose', default=False)
# smooth poses
parser.add_argument('--num', type=int, default=5)
parser.add_argument('--std', type=float, default=2.5)
parser.add_argument('--ffmpeg', type=str, default='ffmpeg')
args = parser.parse_args()
main(args)