-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathvisualiser.py
170 lines (127 loc) · 5.78 KB
/
visualiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
'''
contains all methods for visualisation tasks
'''
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from environment import build_hospital
from utils import check_folder
def set_style(Config):
'''sets the plot style
'''
if Config.plot_style.lower() == 'dark':
mpl.style.use('plot_styles/dark.mplstyle')
def build_fig(Config, figsize=(5,7)):
set_style(Config)
fig = plt.figure(figsize=(5,7))
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1 = fig.add_subplot(spec[0,0])
plt.title('infection simulation')
plt.xlim(Config.xbounds[0], Config.xbounds[1])
plt.ylim(Config.ybounds[0], Config.ybounds[1])
ax2 = fig.add_subplot(spec[1,0])
ax2.set_title('number of infected')
#ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, Config.pop_size + 100)
#if
return fig, spec, ax1, ax2
def draw_tstep(Config, population, pop_tracker, frame,
fig, spec, ax1, ax2):
#construct plot and visualise
#set plot style
set_style(Config)
#get color palettes
palette = Config.get_palette()
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1.clear()
ax2.clear()
ax1.set_xlim(Config.x_plot[0], Config.x_plot[1])
ax1.set_ylim(Config.y_plot[0], Config.y_plot[1])
if Config.self_isolate and Config.isolation_bounds != None:
build_hospital(Config.isolation_bounds[0], Config.isolation_bounds[2],
Config.isolation_bounds[1], Config.isolation_bounds[3], ax1,
addcross = False)
#plot population segments
healthy = population[population[:,6] == 0][:,1:3]
ax1.scatter(healthy[:,0], healthy[:,1], color=palette[0], s = 2, label='healthy')
infected = population[population[:,6] == 1][:,1:3]
ax1.scatter(infected[:,0], infected[:,1], color=palette[1], s = 2, label='infected')
immune = population[population[:,6] == 2][:,1:3]
ax1.scatter(immune[:,0], immune[:,1], color=palette[2], s = 2, label='immune')
fatalities = population[population[:,6] == 3][:,1:3]
ax1.scatter(fatalities[:,0], fatalities[:,1], color=palette[3], s = 2, label='dead')
#add text descriptors
ax1.text(Config.x_plot[0],
Config.y_plot[1] + ((Config.y_plot[1] - Config.y_plot[0]) / 100),
'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' %(frame,
len(population),
len(healthy),
len(infected),
len(immune),
len(fatalities)),
fontsize=6)
ax2.set_title('number of infected')
ax2.text(0, Config.pop_size * 0.05,
'https://github.com/paulvangentcom/python-corona-simulation',
fontsize=6, alpha=0.5)
#ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, Config.pop_size + 200)
if Config.treatment_dependent_risk:
infected_arr = np.asarray(pop_tracker.infectious)
indices = np.argwhere(infected_arr >= Config.healthcare_capacity)
ax2.plot([Config.healthcare_capacity for x in range(len(pop_tracker.infectious))],
'r:', label='healthcare capacity')
if Config.plot_mode.lower() == 'default':
ax2.plot(pop_tracker.infectious, color=palette[1])
ax2.plot(pop_tracker.fatalities, color=palette[3], label='fatalities')
elif Config.plot_mode.lower() == 'sir':
ax2.plot(pop_tracker.susceptible, color=palette[0], label='susceptible')
ax2.plot(pop_tracker.infectious, color=palette[1], label='infectious')
ax2.plot(pop_tracker.recovered, color=palette[2], label='recovered')
ax2.plot(pop_tracker.fatalities, color=palette[3], label='fatalities')
else:
raise ValueError('incorrect plot_style specified, use \'sir\' or \'default\'')
ax2.legend(loc = 'best', fontsize = 6)
plt.draw()
plt.pause(0.0001)
if Config.save_plot:
try:
plt.savefig('%s/%i.png' %(Config.plot_path, frame))
except:
check_folder(Config.plot_path)
plt.savefig('%s/%i.png' %(Config.plot_path, frame))
def plot_sir(Config, pop_tracker, size=(6,3), include_fatalities=False,
title='S-I-R plot of simulation'):
'''plots S-I-R parameters in the population tracker
Keyword arguments
-----------------
Config : class
the configuration class
pop_tracker : ndarray
the population tracker, containing
size : tuple
size at which the plot will be initialised (default: (6,3))
include_fatalities : bool
whether to plot the fatalities as well (default: False)
'''
#set plot style
set_style(Config)
#get color palettes
palette = Config.get_palette()
#plot the thing
plt.figure(figsize=size)
plt.title(title)
plt.plot(pop_tracker.susceptible, color=palette[0], label='susceptible')
plt.plot(pop_tracker.infectious, color=palette[1], label='infectious')
plt.plot(pop_tracker.recovered, color=palette[2], label='recovered')
if include_fatalities:
plt.plot(pop_tracker.fatalities, color=palette[3], label='fatalities')
#add axis labels
plt.xlabel('time in hours')
plt.ylabel('population')
#add legend
plt.legend()
#beautify
plt.tight_layout()
#initialise
plt.show()