forked from tlepoint/homomorphic-simon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimon.cpp
266 lines (224 loc) · 7.42 KB
/
Simon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
Copyright or © or Copr. Tancrede Lepoint.
This software is a computer program whose purpose is to provide to the
research community a proof-of-concept implementation of the homomorphic
evaluation of the lightweight block cipher SIMON, describe in the paper
"A Comparison of the Homomorphic Encryption Schemes FV and YASHE", of
Tancrede Lepoint and Michael Naehrig, available at
http://eprint.iacr.org/2014.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
#include "Simon.h"
#ifdef SIMON
/* Some Simon specific values, dependent on the chosen version of SIMON */
#if SIMON == 32
unsigned z[28] = { 1,1,1,1,
1,0,1,0,
0,0,1,0,
0,1,0,1,
0,1,1,0,
0,0,0,1,
1,1,0,0};
unsigned maskKey = 0xffff;
unsigned key[] = {0x0100, 0x0908, 0x1110, 0x1918};
unsigned initialPlaintext[] = {0x6565, 0x6877};
unsigned expectedCiphertext[] = {0xc69b, 0xe9bb};
#elif SIMON == 64
unsigned z[40] = { 1,1,0,1,
1,0,1,1,
1,0,1,0,
1,1,0,0,
0,1,1,0,
0,1,0,1,
1,1,1,0,
0,0,0,0,
0,1,0,0,
1,0,0,0};
unsigned maskKey = 0xffffffff;
unsigned key[] = {0x03020100, 0x0b0a0908, 0x13121110, 0x1b1a1918};
unsigned initialPlaintext[] = {0x656b696c, 0x20646e75};
unsigned expectedCiphertext[] = {0x44c8fc20, 0xb9dfa07a};
#endif
/* Shift */
inline unsigned S(unsigned v, unsigned l)
{
return ((v<<l) ^ (v>>(SIMON/2-l))) & maskKey;
}
/* (Non) homomorphic key expansion */
void keyExpand(unsigned *expandedKey, unsigned* key)
{
unsigned tmp;
for (unsigned i=0; i<4; i++)
{
expandedKey[i] = key[i];
}
for (unsigned i=4; i<ROUNDS; i++)
{
tmp = S(expandedKey[i-1],SIMON/2-3) ^ expandedKey[i-3];
tmp ^= S(tmp,SIMON/2-1);
expandedKey[i] = maskKey ^ 3 ^ z[i-4] ^ tmp ^ expandedKey[i-4];
}
}
/* Homomorphic key expansion */
void homomorphicKeyExpand(std::vector< std::vector<Ciphertext> >& encryptedKeys, unsigned* key, KEY *sqkey)
{
// Encrypt the initial key
#pragma omp parallel for schedule(static, 1)
for (unsigned j=0; j<4; j++)
{
std::vector<BitVector> b(SIMON/2, BitVector(sqkey->get_num_slots()));
for (unsigned i=0; i<SIMON/2; i++)
{
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
b[i][l] = (key[j]>>i)&1;
}
for (unsigned i=0; i<SIMON/2; i++)
encryptedKeys[j].push_back(sqkey->encrypt_with_sk(b[i]));
}
// Homomorphic KeyExpand
std::vector<Ciphertext> tmp(SIMON/2, encryptedKeys[0][0]);
std::vector< std::vector<Ciphertext> > tmpc(2, tmp);
std::vector<BitVector> b(SIMON/2, BitVector(sqkey->get_num_slots()));
for (unsigned i=0; i<SIMON/2; i++)
{
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
b[i][l] = 1;
}
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
b[1][l] = 0;
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
b[0][l] = 0;
for (unsigned i=0; i<SIMON/2; i++)
tmpc[0][i] = sqkey->encrypt_with_sk(b[i]);
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
b[0][l] = 1;
for (unsigned i=0; i<SIMON/2; i++)
tmpc[1][i] = sqkey->encrypt_with_sk(b[i]);
for (unsigned j=4; j<ROUNDS; j++)
{
for (unsigned i=0; i<SIMON/2; i++)
{
encryptedKeys[j].push_back(encryptedKeys[j-1][(i+3)%(SIMON/2)]+encryptedKeys[j-3][i]+encryptedKeys[j-1][(i+4)%(SIMON/2)]+encryptedKeys[j-3][(i+1)%(SIMON/2)]+encryptedKeys[j-4][i]+tmpc[z[j-4]][i]);
}
}
}
/* Encrypt the state */
void encryptState(std::vector<Ciphertext> &state, unsigned *plain, unsigned size, KEY *sqkey)
{
BitVector B(sqkey->get_num_slots());
state.resize(SIMON/2*size, sqkey->encrypt_with_sk(B));
std::vector<BitVector> b(SIMON/2*size, BitVector(sqkey->get_num_slots()));
for (unsigned l=0; l<1; l++)
{
for (unsigned i=0; i<SIMON/2; i++)
{
for (unsigned s=0; s<size; s++)
{
b[i+s*SIMON/2][l] = (plain[size*l+s]>>i)&1;
}
}
}
#pragma omp parallel for
for (unsigned i=0; i<SIMON/2*size; i++)
state[i] = sqkey->encrypt_with_sk(b[i]);
b.clear();
}
/* Print the state */
void printState(std::vector<Ciphertext> &st, unsigned size, KEY *sqkey, bool printOnlyFirst)
{
unsigned *vecplain = new unsigned[sqkey->get_num_slots()*size];
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
for (unsigned s=0; s<size; s++)
vecplain[size*l+s] = 0;
for (unsigned i = 0; i<SIMON/2; i++)
{
for (unsigned s=0; s<size; s++)
{
BitVector b = sqkey->decrypt(st[i+(SIMON/2)*s]);
for (unsigned l=0; l<sqkey->get_num_slots(); l++)
{
vecplain[size*l+s] = vecplain[size*l+s]^(((unsigned) b[l])<<(i));//-32*s));
}
}
}
if (printOnlyFirst)
{
for (unsigned s=0; s<size; s++)
std::cout << "0x" << hex << vecplain[s] << ((s==size-1)? " " : ", ");
std::cout << std::endl;
}
else
{
for (unsigned l=0; l < sqkey->get_num_slots(); l++)
{
std::cout << "#" << l << ": ";
for (unsigned s=0; s<size; s++)
std::cout << "0x" << hex << vecplain[size*l+s] << ((s==size-1)? " " : ", ");
std::cout << std::endl;
}
}
}
/* Simon homomorphic encryption */
void SimonEncrypt(std::vector<Ciphertext> &state, std::vector< std::vector<Ciphertext> > &expandedKey, KEY *sqkey)
{
#ifdef VERBOSE
timing t;
std::cout << "Initial state: " << state[0] << std::endl;
#endif
for (unsigned j=0; j<ROUNDS/2; j++)
{
std::cout << "Round "<< std::dec << 2*j+1 << std::endl;
#ifdef VERBOSE
t.start();
#endif
#pragma omp parallel for schedule(static, 1)
for (unsigned i=0; i<(SIMON/2); i++)
{
state[i+(SIMON/2)] += expandedKey[j*2][i]+state[(i-2)%(SIMON/2)];
state[i+(SIMON/2)] += state[(i-8)%(SIMON/2)]*state[(i-1)%(SIMON/2)];
}
#ifdef VERBOSE
t.stop( "#" );
std::cout << "state: " << state[(SIMON/2)] << std::endl;
printState(state, 2, sqkey);
#endif
std::cout << "Round "<< std::dec << 2*j+2 << std::endl;
#ifdef VERBOSE
t.start();
#endif
#pragma omp parallel for schedule(static, 1)
for (unsigned i=0; i<(SIMON/2); i++)
{
state[i] += expandedKey[j*2+1][i]+state[(i-2)%(SIMON/2)+(SIMON/2)];
state[i] += state[(i-8)%(SIMON/2)+(SIMON/2)]*state[(i-1)%(SIMON/2)+(SIMON/2)];
}
#ifdef VERBOSE
t.stop( "#" );
std::cout << "state: " << state[0] << std::endl;
printState(state, 2, sqkey);
#endif
}
}
#endif