forked from zhm-real/PathPlanning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulation_Mapping.py
521 lines (418 loc) · 23.6 KB
/
Simulation_Mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details: Simple vehicle model with 'rotating' laser scanner
#
# Author: Johannes Gerstmayr
# Date: 2023-04-11
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
import exudyn
import exudyn as exu
from exudyn.utilities import *
from exudyn.robotics.utilities import AddLidar
from exudyn.robotics.motion import Trajectory, ProfileConstantAcceleration
import numpy as np
from math import sin, cos, tan
import matplotlib.pyplot as plt
useGraphics = True #without test
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#you can erase the following lines and all exudynTestGlobals related operations if this is not intended to be used as TestModel:
try: #only if called from test suite
from modelUnitTests import exudynTestGlobals #for globally storing test results
useGraphics = exudynTestGlobals.useGraphics
except:
class ExudynTestGlobals:
pass
exudynTestGlobals = ExudynTestGlobals()
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
useGraphics=True
SC = exu.SystemContainer()
mbs = SC.AddSystem()
g = [0,0,-9.81] #gravity in m/s^2
doBreaking = False
def Rot2D(phi):
return np.array([[np.cos(phi),-np.sin(phi)],
[np.sin(phi), np.cos(phi)]])
#++++++++++++++++++++++++++++++
#wheel parameters:
rhoWheel = 500 #density kg/m^3
rWheel = 0.4 #radius of disc in m
wWheel = 0.2 #width of disc in m, just for drawing
p0Wheel = [0,0,rWheel] #origin of disc center point at reference, such that initial contact point is at [0,0,0]
initialRotationCar = RotationMatrixZ(0)
v0 = -5*0 #initial car velocity in y-direction
omega0Wheel = [v0/rWheel,0,0] #initial angular velocity around z-axis
#v0 = [0,0,0] #initial translational velocity
#exu.Print("v0Car=",v0)
#++++++++++++++++++++++++++++++
#car parameters:
p0Car = [0,0,rWheel] #origin of disc center point at reference, such that initial contact point is at [0,0,0]
lCar = 2 #y-direction
wCar = 1.5 #x-direction
hCar = rWheel #z-direction
mCar = 500
omega0Car = [0,0,0] #initial angular velocity around z-axis
v0Car = [0,-v0,0] #initial velocity of car center point
#inertia for infinitely small ring:
inertiaWheel = InertiaCylinder(density=rhoWheel, length=wWheel, outerRadius=rWheel, axis=0)
#exu.Print(inertiaWheel)
inertiaCar = InertiaCuboid(density=mCar/(lCar*wCar*hCar),sideLengths=[wCar, lCar, hCar])
#exu.Print(inertiaCar)
#
rLidar = 0.5*rWheel
pLidar1 = [(-wCar*0.5-rLidar)*0, 0*(lCar*0.5+rWheel+rLidar), hCar*0.8]
# pLidar2 = [ wCar*0.5+rLidar,-lCar*0.5-rWheel-rLidar,hCar*0.5]
graphicsCar = [GraphicsDataOrthoCubePoint(centerPoint=[0,0,0],size=[wCar-1.1*wWheel, lCar+2*rWheel, hCar],
color=color4steelblue)]
graphicsCar += [GraphicsDataCylinder(pAxis=pLidar1, vAxis=[0,0,0.5*rLidar], radius=rLidar, clor=color4darkgrey)]
graphicsCar += [GraphicsDataBasis(headFactor = 4, length=2)]
# graphicsCar += [GraphicsDataCylinder(pAxis=pLidar2, vAxis=[0,0,0.5*rLidar], radius=rLidar, clor=color4darkgrey)]
[nCar,bCar]=AddRigidBody(mainSys = mbs,
inertia = inertiaCar,
nodeType = str(exu.NodeType.RotationEulerParameters),
position = p0Car,
rotationMatrix = initialRotationCar,
angularVelocity = omega0Car,
velocity=v0Car,
gravity = g,
graphicsDataList = graphicsCar)
markerCar = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=[0,0,hCar*0.5]))
markerCar1 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pLidar1))
# markerCar2 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pLidar2))
nWheels = 4
markerWheels=[]
markerCarAxles=[]
oRollingDiscs=[]
sAngularVelWheels=[]
# car setup:
# ^Y, lCar
# | W2 +---+ W3
# | | |
# | | + | car center point
# | | |
# | W0 +---+ W1
# +---->X, wCar
#ground body and marker
LL = 8
gGround = GraphicsDataCheckerBoard(point=[0.25*LL,0.25*LL,0],size=2*LL)
#obstacles:
zz=1
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[0,8,0.5*zz],size=[2*zz,zz,1*zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[8,6,1.5*zz],size=[zz,2*zz,3*zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[4,-4,0.5*zz],size=[2*zz,zz,1*zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataCylinder(pAxis=[8,0,0],vAxis=[0,0,zz], radius=1.5, color=color4dodgerblue, nTiles=64), gGround)
#walls:
tt=0.2
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[0.25*LL,0.25*LL-LL,0.5*zz],size=[2*LL,tt,zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[0.25*LL,0.25*LL+LL,0.5*zz],size=[2*LL,tt,zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[0.25*LL-LL,0.25*LL,0.5*zz],size=[tt,2*LL,zz], color=color4dodgerblue), gGround)
gGround = MergeGraphicsDataTriangleList(GraphicsDataOrthoCubePoint(centerPoint=[0.25*LL+LL,0.25*LL,0.5*zz],size=[tt,2*LL,zz], color=color4dodgerblue), gGround)
oGround = mbs.AddObject(ObjectGround(visualization=VObjectGround(graphicsData=[gGround])))
mGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround, localPosition=[0,0,0]))
#%%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#set up general contact geometry where sensors measure
[meshPoints, meshTrigs] = GraphicsData2PointsAndTrigs(gGround)
ngc = mbs.CreateDistanceSensorGeometry(meshPoints, meshTrigs, rigidBodyMarkerIndex=mGround, searchTreeCellSize=[8,8,1])
#single sensor:
# sDistanceSphere = mbs.CreateDistanceSensor(ngc, positionOrMarker=markerCar2, dirSensor=dirSensor2,
# minDistance=0, maxDistance=maxDistance, measureVelocity=True,
# cylinderRadius=0, storeInternal=True, addGraphicsObject=True,
# selectedTypeIndex=exu.ContactTypeIndex.IndexTrigsRigidBodyBased,
# color=color4red)
maxDistance = 20 #max. distance of sensors; just large enough to reach everything; take care, in zoom all it will show this large area
# AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
# numberOfSensors=100,angleStart=0, angleEnd=1.5*pi, inclination=0,
# lineLength=1, storeInternal=True, color=color4lawngreen )
mbs.variables['Lidar'] = [-pi*0.25, pi*0.25, 50]
mbs.variables['LidarAngles'] = np.linspace(mbs.variables['Lidar'][1], mbs.variables['Lidar'][0], mbs.variables['Lidar'] [2])
mbs.variables['R'] = []
for phi in mbs.variables['LidarAngles']:
mbs.variables['R'] += [Rot2D(phi+np.pi/2)]
mbs.variables['sLidarList'] = AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar1, minDistance=0, maxDistance=maxDistance,
numberOfSensors=mbs.variables['Lidar'][2],angleStart=mbs.variables['Lidar'][0], angleEnd=mbs.variables['Lidar'][1], # 1.5*pi-pi,
lineLength=1, storeInternal=True, color=color4red, inclination=0)
if 0:
AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
numberOfSensors=100,angleStart=0, angleEnd=1.5*pi, inclination=-4/180*pi,
lineLength=1, storeInternal=True, color=color4grey )
AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
numberOfSensors=100,angleStart=0, angleEnd=1.5*pi, inclination=12/180*pi,
lineLength=1, storeInternal=True, color=color4grey )
#%%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if useGraphics:
sCarVel = mbs.AddSensor(SensorBody(bodyNumber=bCar, storeInternal=True, #fileName='solution/rollingDiscCarVel.txt',
outputVariableType = exu.OutputVariableType.Velocity))
mbs.variables['sRot'] = mbs.AddSensor(SensorBody(bodyNumber=bCar, storeInternal=True, outputVariableType=exu.OutputVariableType.RotationMatrix))
mbs.variables['sPos'] = mbs.AddSensor(SensorBody(bodyNumber=bCar, storeInternal=True, outputVariableType=exu.OutputVariableType.Position))
sPos = []
sTrail=[]
sForce=[]
for iWheel in range(nWheels):
frictionAngle = 0.25*np.pi #45°
if iWheel == 0 or iWheel == 3: #difference in diagonal
frictionAngle *= -1
#additional graphics for visualization of rotation (JUST FOR DRAWING!):
graphicsWheel = [GraphicsDataOrthoCubePoint(centerPoint=[0,0,0],size=[wWheel*1.1,0.7*rWheel,0.7*rWheel], color=color4lightred)]
nCyl = 12
rCyl = 0.1*rWheel
for i in range(nCyl): #draw cylinders on wheels
iPhi = i/nCyl*2*np.pi
pAxis = np.array([0,rWheel*np.sin(iPhi),-rWheel*np.cos(iPhi)])
vAxis = [0.5*wWheel*np.cos(frictionAngle),0.5*wWheel*np.sin(frictionAngle),0]
vAxis2 = RotationMatrixX(iPhi)@vAxis
rColor = color4grey
if i >= nCyl/2: rColor = color4darkgrey
graphicsWheel += [GraphicsDataCylinder(pAxis=pAxis-vAxis2, vAxis=2*vAxis2, radius=rCyl,
color=rColor)]
graphicsWheel+= [GraphicsDataBasis()]
dx = -0.5*wCar
dy = -0.5*lCar
if iWheel > 1: dy *= -1
if iWheel == 1 or iWheel == 3: dx *= -1
kRolling = 1e5
dRolling = kRolling*0.01
initialRotation = RotationMatrixZ(0)
#v0Wheel = Skew(omega0Wheel) @ initialRotationWheel @ [0,0,rWheel] #initial angular velocity of center point
v0Wheel = v0Car #approx.
pOff = [dx,dy,0]
#add wheel body
[n0,b0]=AddRigidBody(mainSys = mbs,
inertia = inertiaWheel,
nodeType = str(exu.NodeType.RotationEulerParameters),
position = VAdd(p0Wheel,pOff),
rotationMatrix = initialRotation, #np.diag([1,1,1]),
angularVelocity = omega0Wheel,
velocity=v0Wheel,
gravity = g,
graphicsDataList = graphicsWheel)
#markers for rigid body:
mWheel = mbs.AddMarker(MarkerBodyRigid(bodyNumber=b0, localPosition=[0,0,0]))
markerWheels += [mWheel]
mCarAxle = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pOff))
markerCarAxles += [mCarAxle]
lockedAxis0 = 0
if doBreaking: lockedAxis0 = 1
#if iWheel==0 or iWheel==1: freeAxis = 1 #lock rotation
mbs.AddObject(GenericJoint(markerNumbers=[mWheel,mCarAxle],rotationMarker1=initialRotation,
constrainedAxes=[1,1,1,lockedAxis0,1,1])) #revolute joint for wheel
#does not work, because revolute joint does not accept off-axis
#kSuspension = 1e4
#dSuspension = kSuspension*0.01
#mbs.AddObject(CartesianSpringDamper(markerNumbers=[mWheel,mCarAxle],stiffness=[0,0,kSuspension],damping=[0,0,dSuspension]))
nGeneric = mbs.AddNode(NodeGenericData(initialCoordinates=[0,0,0], numberOfDataCoordinates=3))
oRolling = mbs.AddObject(ObjectConnectorRollingDiscPenalty(markerNumbers=[mGround, mWheel], nodeNumber = nGeneric,
discRadius=rWheel, dryFriction=[1.,0.001], dryFrictionAngle=frictionAngle,
dryFrictionProportionalZone=1e-1,
rollingFrictionViscous=0.01,
contactStiffness=kRolling, contactDamping=dRolling,
visualization=VObjectConnectorRollingDiscPenalty(discWidth=wWheel, color=color4blue)))
oRollingDiscs += [oRolling]
strNum = str(iWheel)
sAngularVelWheels += [mbs.AddSensor(SensorBody(bodyNumber=b0, storeInternal=True,#fileName='solution/rollingDiscAngVelLocal'+strNum+'.txt',
outputVariableType = exu.OutputVariableType.AngularVelocityLocal))]
if useGraphics:
sPos+=[mbs.AddSensor(SensorBody(bodyNumber=b0, storeInternal=True,#fileName='solution/rollingDiscPos'+strNum+'.txt',
outputVariableType = exu.OutputVariableType.Position))]
sTrail+=[mbs.AddSensor(SensorObject(name='Trail'+strNum,objectNumber=oRolling, storeInternal=True,#fileName='solution/rollingDiscTrail'+strNum+'.txt',
outputVariableType = exu.OutputVariableType.Position))]
sForce+=[mbs.AddSensor(SensorObject(objectNumber=oRolling, storeInternal=True,#fileName='solution/rollingDiscForce'+strNum+'.txt',
outputVariableType = exu.OutputVariableType.ForceLocal))]
#takes as input the translational and angular velocity and outputs the velocities for all 4 wheels
#wheel axis is mounted at x-axis; positive angVel rotates CCW in x/y plane viewed from top
# car setup:
# ^Y, lCar
# | W2 +---+ W3
# | | |
# | | + | car center point
# | | |
# | W0 +---+ W1
# +---->X, wCar
#values given for wheel0/3: frictionAngle=-pi/4, wheel 1/2: frictionAngle=pi/4; dryFriction=[1,0] (looks in lateral (x) direction)
#==>direction of axis of roll on ground of wheel0: [1,-1] and of wheel1: [1,1]
def MecanumXYphi2WheelVelocities(xVel, yVel, angVel, R, Lx, Ly):
LxLy2 = (Lx+Ly)/2
mat = (1/R)*np.array([[ 1,-1, LxLy2],
[-1,-1,-LxLy2],
[-1,-1, LxLy2],
[ 1,-1,-LxLy2]])
return mat @ [xVel, yVel, angVel]
def WheelVelocities2MecanumXYphi(w, R, Lx, Ly):
LxLy2 = (Lx+Ly)/2
mat = (1/R)*np.array([[ 1,-1, LxLy2],
[-1,-1,-LxLy2],
[-1,-1, LxLy2],
[ 1,-1,-LxLy2]])
return np.linalg.pinv(mat) @ w
trajectory = Trajectory(initialCoordinates=[0 ,0 ,0], initialTime=0)
trajectory.Add(ProfileConstantAcceleration([3.6 ,0 ,0], 5))
trajectory.Add(ProfileConstantAcceleration([3.6 ,0 ,0], 0.5))
trajectory.Add(ProfileConstantAcceleration([3.6 ,4.2 ,0], 5))
trajectory.Add(ProfileConstantAcceleration([3.6 ,4.2 ,0], 0.5))
trajectory.Add(ProfileConstantAcceleration([3.6 ,4.2 ,2*np.pi], 10))
pControl = 500
mbs.variables['wheelMotor'] = []
mbs.variables['loadWheel'] = []
for i in range(4):
# Torsional springdamper always acts in z-Axis
RM1 = RotationMatrixY(np.pi/2)
RM0 = RotationMatrixY(np.pi/2)
nData = mbs.AddNode(NodeGenericData(numberOfDataCoordinates = 1, initialCoordinates=[0])) # records multiples of 2*pi
mbs.variables['wheelMotor'] += [mbs.AddObject(TorsionalSpringDamper(name='Wheel{}Motor'.format(i),
# mobileRobotBackDic['mAxlesList'][i]
markerNumbers=[markerCarAxles[i], markerWheels[i]],
nodeNumber= nData, # for continuous Rotation
stiffness = 0, damping = pControl*0.2,
rotationMarker0=RM0,
rotationMarker1=RM1))]
#%%
flagReadPosRot = False
flagOdometry = True
flagLidarNoise = True
lidarNoiseLevel = [0.05, 0.01]
flagVelNoise = True
velNoiseLevel = 0.025
def GetCurrentData(mbs, Rot, pos):
data = np.zeros([mbs.variables['nLidar'] , 2])
if not(flagLidarNoise):
for i, sensor in enumerate(mbs.variables['sLidarList']):
data[i,:] = pos[0:2] + Rot[0:2,0:2] @ mbs.variables['R'][i] @ mbs.GetSensorValues(sensor).tolist() # + [0.32]
else:
noise_distance = np.random.normal(0, lidarNoiseLevel[0], mbs.variables['nLidar'])
noise_angle = np.random.normal(0, lidarNoiseLevel[1], mbs.variables['nLidar'])
for i, sensor in enumerate(mbs.variables['sLidarList']):
data[i,:] = pos[0:2] + Rot2D(noise_angle[i]) @ Rot[0:2,0:2] @ mbs.variables['R'][i] @ (mbs.GetSensorValues(sensor) + [noise_distance[i],0]).tolist() # + [0.32]
return data
#%% PreStepUF is called before every step. There odometry is calculated, velocity
def PreStepUF(mbs, t):
# using Prestep instead of UFLoad reduced simulation time fopr 24 seconds from 6.11887 to 4.02554 seconds (~ 34%)
u, v, a = trajectory.Evaluate(t) #
wDesired = MecanumXYphi2WheelVelocities(v[0],v[1],v[2],rWheel,wCar,lCar)
dt = mbs.sys['dynamicSolver'].it.currentStepSize # for integration of values
# wheel control
for iWheel in range(4):
wCurrent = mbs.GetSensorValues(sAngularVelWheels[iWheel])[0] #local x-axis = wheel axis
mbs.variables['wWheels'][iWheel] = wCurrent # save current wheel velocity
mbs.SetObjectParameter(mbs.variables['wheelMotor'][iWheel], 'velocityOffset', wDesired[iWheel]) # set wheel velocity for control
# calculate odometry
if flagOdometry:
# odometry: vOdom = pinv(J) @ wWheels
# obtain position from vOdom by integration
if flagVelNoise:
vOdom = WheelVelocities2MecanumXYphi(mbs.variables['wWheels'] + np.random.normal(0, velNoiseLevel, 4),
rWheel, wCar, lCar)
else:
vOdom = WheelVelocities2MecanumXYphi(mbs.variables['wWheels'], rWheel, wCar, lCar)
mbs.variables['rotOdom'] += vOdom[-1] * dt # (t - mbs.variables['tLast'])
mbs.variables['posOdom'] += Rot2D(mbs.variables['rotOdom']) @ vOdom[0:2] * dt
# print('pos: ', mbs.variables['posOdom'])
if (t - mbs.variables['tLast']) > mbs.variables['dtLidar']:
mbs.variables['tLast'] += mbs.variables['dtLidar']
if flagReadPosRot:
# position and rotation taken from the gloabl data --> accurate!
Rot = mbs.GetSensorValues(mbs.variables['sRot']).reshape([3,3])
pos = mbs.GetSensorValues(mbs.variables['sPos'])
elif flagOdometry:
Rot = Rot2D(mbs.variables['rotOdom'])
pos = mbs.variables['posOdom']
data = GetCurrentData(mbs, Rot, pos)
k = int(t/mbs.variables['dtLidar'])
print('data {} at t: {}'.format(k, round(t, 2)))
mbs.variables['lidarDataHistory'][k,:,:] = data
mbs.variables['posHistory'][k] = pos[0:2]
mbs.variables['RotHistory'][k] = Rot[0:2,0:2]
# plt.plot(data[:,0], data[:,1], 'x', label='data at t=' + str(round(t, 2)))
# plt.plot(pos[0], pos[1], 'o')
return True
# allocate dictionary values
h=0.005
tEnd = trajectory.GetTimes()[-1] + 2 + h # add +h to call preStepFunction at tEnd
mbs.variables['wWheels'] = np.zeros([4])
mbs.variables['posOdom'], mbs.variables['rotOdom'], mbs.variables['tLast'] = np.array([0,0], dtype=np.float64), 0, 0
mbs.variables['phiWheels'] = np.zeros(4)
mbs.variables['tLast'] = 0
mbs.variables['dtLidar'] = 1 #50e-3
mbs.variables['nLidar'] = len(mbs.variables['sLidarList'])
nMeasure = int(tEnd/mbs.variables['dtLidar']) + 1
mbs.variables['lidarDataHistory'] = np.zeros([nMeasure, mbs.variables['nLidar'], 2])
mbs.variables['RotHistory'] = np.zeros([nMeasure, 2,2])
mbs.variables['RotHistory'][0] = np.eye(2)
mbs.variables['posHistory'] = np.zeros([nMeasure, 2])
mbs.SetPreStepUserFunction(PreStepUF)
mbs.Assemble()
data0 = GetCurrentData(mbs, mbs.GetSensorValues(mbs.variables['sRot']).reshape([3,3]), mbs.GetSensorValues(mbs.variables['sPos']))
mbs.variables['lidarDataHistory'][0] = data0
#%%
simulationSettings = exu.SimulationSettings() #takes currently set values or default values
simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
simulationSettings.timeIntegration.endTime = tEnd
simulationSettings.solutionSettings.sensorsWritePeriod = 0.1
simulationSettings.timeIntegration.verboseMode = 1
simulationSettings.displayComputationTime = False
simulationSettings.displayStatistics = False
simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.5 # 0.5
simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations=True
simulationSettings.timeIntegration.newton.useModifiedNewton = True
simulationSettings.timeIntegration.discontinuous.ignoreMaxIterations = False #reduce step size for contact switching
simulationSettings.timeIntegration.discontinuous.iterationTolerance = 0.1
simulationSettings.linearSolverType=exu.LinearSolverType.EigenSparse
speedup=True
if speedup:
simulationSettings.timeIntegration.discontinuous.ignoreMaxIterations = False #reduce step size for contact switching
simulationSettings.timeIntegration.discontinuous.iterationTolerance = 0.1
SC.visualizationSettings.general.graphicsUpdateInterval = 0.01
SC.visualizationSettings.nodes.show = True
SC.visualizationSettings.nodes.drawNodesAsPoint = False
SC.visualizationSettings.nodes.showBasis = True
SC.visualizationSettings.nodes.basisSize = 0.015
SC.visualizationSettings.openGL.lineWidth = 2
SC.visualizationSettings.openGL.shadow = 0.3
SC.visualizationSettings.openGL.multiSampling = 4
SC.visualizationSettings.openGL.perspective = 0.7
#create animation:
if useGraphics:
SC.visualizationSettings.window.renderWindowSize=[1920,1080]
SC.visualizationSettings.openGL.multiSampling = 4
if False: #save images
simulationSettings.solutionSettings.sensorsWritePeriod = 0.01 #to avoid laggy visualization
simulationSettings.solutionSettings.recordImagesInterval = 0.04
SC.visualizationSettings.exportImages.saveImageFileName = "images/frame"
if useGraphics:
exu.StartRenderer()
mbs.WaitForUserToContinue()
mbs.SolveDynamic(simulationSettings)
if useGraphics:
SC.WaitForRenderEngineStopFlag()
exu.StopRenderer() #safely close rendering window!
#%%
p0=mbs.GetObjectOutputBody(bCar, exu.OutputVariableType.Position, localPosition=[0,0,0])
if True:
# plt.close('all')
plt.figure()
from matplotlib import colors as mcolors
myColors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
col1 = mcolors.to_rgb(myColors['red'])
col2 = mcolors.to_rgb(myColors['green'])
for i in range(0, mbs.variables['lidarDataHistory'].shape[0]):
col_i = np.array(col1)* (1 - i/(nMeasure-1)) + np.array(col2)* (i/(nMeasure-1))
plt.plot(mbs.variables['lidarDataHistory'][i,:,0], mbs.variables['lidarDataHistory'][i,:,1],
'x', label='lidar m' + str(i), color=col_i.tolist())
e1 = mbs.variables['RotHistory'][i][:,1]
p = mbs.variables['posHistory'][i]
plt.plot(p[0], p[1], 'o', color=col_i)
plt.arrow(p[0], p[1], e1[0], e1[1], color=col_i, head_width=0.2)
plt.title('lidar data: using ' + 'accurate data' * bool(flagReadPosRot) + 'inaccurate Odometry' * bool(not(flagReadPosRot)))
plt.grid()
plt.axis('equal')
plt.xlabel('x in m')
plt.ylabel('y in m')
##++++++++++++++++++++++++++++++++++++++++++++++q+++++++
#plot results
# if useGraphics and False:
# mbs.PlotSensor(sTrail, componentsX=[0]*4, components=[1]*4, title='wheel trails', closeAll=True,
# markerStyles=['x ','o ','^ ','D '], markerSizes=12)
# mbs.PlotSensor(sForce, components=[1]*4, title='wheel forces')