-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathpreferences_ProcessCellMetrics.m
87 lines (69 loc) · 5.1 KB
/
preferences_ProcessCellMetrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function preferences = preferences_ProcessCellMetrics(session)
% Preferences loaded by ProcessCellMetrics
%
% Check the website of CellExplorer for more details: https://cellexplorer.org/
% By Peter Petersen
% Last edited: 10-11-2022
% General
preferences.general.probesVerticalSpacing = 10; % 10um spacing between channels
preferences.general.probesLayout = 'poly2'; % Default probe layout
% Loading spike data
preferences.loadSpikes.labelsToRead = {'good'}; % allows you to load units with various labels, e.g. MUA or a custom label
% Waveform
preferences.waveform.nPull = 600; % number of spikes to pull out (default: 600)
preferences.waveform.wfWin_sec = 0.004; % Larger window of the waveform for filtering (to avoid edge effects). Total width in seconds [default 4ms]
preferences.waveform.wfWinKeep = 0.0008; % half width of the waveform. In seconds [default 0.8ms]
preferences.waveform.trilat_nChannels = 16; % Maximum number of channels used for trilateration
preferences.waveform.showWaveforms = true;
% PSTHs / Events / Manipulations (the standard preferences for PSTHs)
preferences.psth.binCount = 100; % how many bins (for half the window)
preferences.psth.alignment = 'onset'; % alignment of time ['onset','center','peaks','offset']
preferences.psth.binDistribution = [0.25,0.5,0.25]; % How the bins should be distributed around the events, pre, during, post. Must sum to 1
preferences.psth.intervals = [nan,nan,nan]; % Define specific intervals to be applied. Must be a 1x3 vector [in seconds]
preferences.psth.duration = nan; % duration of PSTH (for half the window - used in CCG) [in seconds]
preferences.psth.smoothing = 5; % any gaussian smoothing to apply? units of bins.
preferences.psth.percentile = 99; % if events does not have the same length, the event duration can be determined from percentile of the distribution of events
% PSTH for ripples (custom preferences for events. below preferences are applied for the PSTHs calculated for ripples)
preferences.psth.ripples.binCount = 150; % how many bins (for half the window)
preferences.psth.ripples.alignment = 'peaks'; % alignment of time ['onset','center','peaks','offset']
preferences.psth.ripples.binDistribution = [0.25,0.5,0.25]; % How the bins should be distributed around the events, pre, during, post. Must sum to 1
preferences.psth.ripples.intervals = [nan,nan,nan]; % Define specific intervals to be applied. Must be a 1x3 vector [in seconds]
preferences.psth.ripples.duration = 0.150; % duration of PSTH (for half the window - used in CCG) [in seconds]
preferences.psth.ripples.smoothing = 5; % any gaussian smoothing to apply? units of bins.
preferences.psth.ripples.percentile = 99; % if events does not have the same length, the event duration can be determined from percentile of the distribution of events
% ACG metrics
preferences.acg_metrics.population_modIndex = true;
% Other
preferences.other.firingRateAcrossTime_binsize = 3*60; % 180 seconds default bin_size
% PutativeCellType
% Default classification schema:
preferences.putativeCellType.classification_schema = 'standard'; % You may select and define your own schema. The classification schemas are loaded from +celltype_classification
% By default cells are reassigned as interneurons by below criteria
% 1. narrow interneurons are assigned if troughToPeak <= 0.425ms
preferences.putativeCellType.troughToPeak_boundary = 0.425; %
% 2. the remaining cells are assigned as wide interneurons if acg_tau_rise > 6ms:
preferences.putativeCellType.acg_tau_rise_boundary = 6;
% Remaining cells are classified as pyramidal cells
% PCA
% ACG
% monoSynaptic_connections
% Spatial
% % % % % % % % % % % % % % % % % % % %
% Hippocampal preferences
% % % % % % % % % % % % % % % % % % % %
% Deep superficial
preferences.deepSuperficial.ripples_durations = [20 150]; % in ms
preferences.deepSuperficial.ripples_passband = [80 240]; % in Hz
% Theta oscillation metrics
preferences.theta.bins = [-1:0.05:1]*pi; % theta bins from -pi to pi
preferences.theta.speed_threshold = 10; % behavioral running speed (cm/s)
preferences.theta.min_spikes = 500; % only calculated if the unit has above 500 spikes
% % % % % % % % % % % % % % % % % % % %
% User preferences
% % % % % % % % % % % % % % % % % % % %
% You may edit above preferences or provide your own preferences in a separate file.
% Provide the path to your preferences as an analysis tag in the session struct:
% session.analysisTags.preferences_ProcessCellMetrics = 'user_preferences.my_preferences'; % loads the my_preference.m file from the folder +user_preferences
if exist('session','var') && isfield(session,'analysisTags') && isfield(session.analysisTags,'preferences_ProcessCellMetrics') && ~isempty(which(session.analysisTags.preferences_ProcessCellMetrics))
preferences = feval(session.analysisTags.preferences_ProcessCellMetrics,preferences,session);
end