-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
executable file
·158 lines (133 loc) · 5.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import argparse
import logging
import json
import numpy as np
import os
import trimesh
import deep_sdf
import deep_sdf.workspace as ws
if not os.name == "nt":
# We do not import this on Windows.
import pytorch3d
def evaluate(experiment_directory, checkpoint, data_dir, split_filename, curvature_sampling=0.):
with open(split_filename, "r") as f:
split = json.load(f)
chamfer_results = []
for dataset in split:
for class_name in split[dataset]:
for instance_name in split[dataset][class_name]:
logging.debug(
"evaluating " + os.path.join(dataset, class_name, instance_name)
)
checkpoint_ = f"{checkpoint}_on_train_set" if "train" in split_filename else checkpoint
reconstructed_mesh_filename = ws.get_reconstructed_mesh_filename(
experiment_directory, checkpoint_, dataset, class_name, instance_name
)
logging.debug(
'reconstructed mesh is "' + reconstructed_mesh_filename + '"'
)
ground_truth_samples_filename = os.path.join(
data_dir,
"SurfaceSamples",
dataset,
class_name,
instance_name + ".ply",
)
logging.debug(
"ground truth samples are " + ground_truth_samples_filename
)
normalization_params_filename = os.path.join(
data_dir,
"NormalizationParameters",
dataset,
class_name,
instance_name + ".npz",
)
logging.debug(
"normalization params are " + ground_truth_samples_filename
)
ground_truth_points = trimesh.load(ground_truth_samples_filename)
reconstruction = trimesh.load(reconstructed_mesh_filename)
normalization_params = np.load(normalization_params_filename)
chamfer_dist, all_dists = deep_sdf.metrics.chamfer.compute_trimesh_chamfer(
ground_truth_points,
reconstruction,
normalization_params["offset"],
normalization_params["scale"],
curvature_sampling=curvature_sampling
)
percentiles = np.percentile(all_dists, [90, 95])
normal_consistency = deep_sdf.metrics.compute_metric(gen_mesh=reconstruction, metric="normal_consistency")
logging.debug("chamfer distance: " + str(chamfer_dist))
chamfer_results.append(
(os.path.join(dataset, class_name, instance_name), (chamfer_dist, percentiles), normal_consistency)
)
output_filename = os.path.join(
ws.get_evaluation_dir(experiment_directory, checkpoint, True),
"chamfer"
)
output_filename += "_on_train_set" if "train" in split_filename else ""
output_filename += f".csv" if curvature_sampling == 0. else f"_{curvature_sampling:.3f}_curvature.csv"
logging.info(split_filename)
logging.info(output_filename)
with open(output_filename,"w",) as f:
# semicolon-separated CSV file
f.write("shape;chamfer_dist;90th_percentile;95th_percentile;normal_consistency\n")
for result in chamfer_results:
f.write("{};{};{};{}\n".format(result[0], result[1][0], result[1][1][0], result[1][1][1], result[2]))
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(description="Evaluate a DeepSDF autodecoder")
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory. This directory should include experiment specifications in "
+ '"specs.json", and logging will be done in this directory as well.',
)
arg_parser.add_argument(
"--checkpoint",
"-c",
dest="checkpoint",
default="2000",
help="The checkpoint to test.",
)
arg_parser.add_argument(
"--data",
"-d",
dest="data_source",
default="../../shared/deepsdfcomp/data/",
help="The data source directory.",
)
arg_parser.add_argument(
"--split",
"-s",
dest="split_filename",
default="../../shared/deepsdfcomp/experiments/splits/sv2_planes_test.json",
help="The split to evaluate.",
)
arg_parser.add_argument(
"--curvature_sampling",
"-cs",
dest="curvature_sampling",
default=0.0,
required=False,
help="Amount of sampling wrt mesh curvature. 0 means smapling wrt. face area, 1 wrt. face curvature.",
)
deep_sdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
deep_sdf.configure_logging(args)
curvature_sampling = args.curvature_sampling
try:
curvature_sampling = float(curvature_sampling)
evaluate(
args.experiment_directory,
args.checkpoint,
args.data_source,
args.split_filename,
curvature_sampling
)
except ValueError as ve:
logging.error(f"Could not cast {args.curvature_sampling} to float" + str(ve.args))