-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodules.py
211 lines (168 loc) · 7.18 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import tensorflow as tf
def layer_normalization(inputs, eps=1e-8, scope="layer_normalization"):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta = tf.get_variable("beta",
params_shape,
initializer=tf.zeros_initializer())
gamma = tf.get_variable("gamma",
params_shape,
initializer=tf.ones_initializer())
normalized = (inputs - mean) / ((variance + eps) ** (.5))
outputs = gamma * normalized + beta
return outputs
def get_token_embeddings(vocab_size, num_units, zero_pad=True):
'''Constructs token embedding matrix.
Note that the column of index 0's are set to zeros.
vocab_size: scalar. V.
num_units: embedding dimensionalty. E.
zero_pad: Boolean. If True, all the values of the first row (id = 0)
should be constant zero To apply query/key masks easily, zero pad is
turned on.
Returns
weight variable: (V, E)
'''
with tf.variable_scope("shared_weight_matrix"):
embeddings = tf.get_variable('weight_mat',
dtype=tf.float32,
shape=(vocab_size, num_units),
initializer=tf.contrib.layers.xavier_initializer())
if zero_pad:
embeddings = tf.concat((tf.zeros(shape=[1, num_units]),
embeddings[1:, :]), 0)
return embeddings
def scaled_dot_product_attention(Q, K, V,
causality,
dropout_rate,
scope="scaled_dot_product_attention"):
'''
Q: Packed queries. 3d tensor. [N, T_q, d_k].
K: Packed keys. 3d tensor. [N, T_k, d_k].
V: Packed values. 3d tensor. [N, T_k, d_v].
causality: If True, applies masking for future blinding
dropout_rate: A floating point number of [0, 1].
scope: Optional scope for `variable_scope`.
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
d_k = Q.get_shape().as_list()[-1]
# dot product
outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k)
# scale
outputs /= d_k ** 0.5
# key masking
# if causality:
outputs = mask(outputs)
# softmax
outputs = tf.nn.softmax(outputs)
# dropout
outputs = tf.nn.dropout(outputs, dropout_rate)
# weighted sum (context vectors)
outputs = tf.matmul(outputs, V) # (N, T_q, d_v)
return outputs
def mask(inputs):
padding_num = -2 ** 32 + 1
diag_vals = tf.ones_like(inputs[0, :, :]) # (T_q, T_k)
tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1]) # (N, T_q, T_k)
paddings = tf.ones_like(masks) * padding_num
outputs = tf.where(tf.equal(masks, 0), paddings, inputs)
return outputs
def multihead_attention(queries, keys, values,
num_heads,
dropout,
causality=False,
scope="multihead_attention"):
'''Applies multihead attention. See 3.2.2
queries: A 3d tensor with shape of [N, T_q, d_model].
keys: A 3d tensor with shape of [N, T_k, d_model].
values: A 3d tensor with shape of [N, T_k, d_model].
num_heads: An int. Number of heads.
dropout_rate: A floating point number.
training: Boolean. Controller of mechanism for dropout.
causality: Boolean. If true, units that reference the future are masked.
scope: Optional scope for `variable_scope`.
Returns
A 3d tensor with shape of (N, T_q, C)
'''
d_model = queries.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Linear projections
# (N, T_q, d_model)
Q = tf.layers.dense(queries, d_model, use_bias=False)
# (N, T_k, d_model)
K = tf.layers.dense(keys, d_model, use_bias=False)
# (N, T_k, d_model)
V = tf.layers.dense(values, d_model, use_bias=False)
# Split and concat
# (h*N, T_q, d_model/h)
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0)
# (h*N, T_k, d_model/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0)
# (h*N, T_k, d_model/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0)
# Attention
outputs = scaled_dot_product_attention(Q_, K_, V_,
causality,
dropout)
# Restore shape
# (N, T_q, d_model)
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2)
# Residual connection
outputs += queries
# Normalize
outputs = layer_normalization(outputs)
return outputs
def ff(inputs, num_units, scope="positionwise_feedforward"):
'''position-wise feed forward net. See 3.3
inputs: A 3d tensor with shape of [N, T, C].
num_units: A list of two integers.
scope: Optional scope for `variable_scope`.
Returns:
A 3d tensor with the same shape and dtype as inputs
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Inner layer
outputs = tf.layers.dense(inputs, num_units[0], activation=tf.nn.relu)
# Outer layer
outputs = tf.layers.dense(outputs, num_units[1])
# Residual connection
outputs += inputs
# Normalize
outputs = layer_normalization(outputs)
return outputs
def positional_encoding(inputs,
maxlen,
masking=True,
scope="positional_encoding"):
'''Sinusoidal Positional_Encoding. See 3.5
inputs: 3d tensor. (N, T, E)
maxlen: scalar. Must be >= T
masking: Boolean. If True, padding positions are set to zeros.
scope: Optional scope for `variable_scope`.
returns
3d tensor that has the same shape as inputs.
'''
E = inputs.get_shape().as_list()[-1] # static
N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# position indices
# (N, T)
position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1])
# First part of the PE function: sin and cos argument
position_enc = np.array([
[pos / np.power(10000, (i - i % 2) / E) for i in range(E)]
for pos in range(maxlen)])
# Second part, apply the cosine to even columns and sin to odds.
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1
# (maxlen, E)
position_enc = tf.convert_to_tensor(position_enc, tf.float32)
# lookup
outputs = tf.nn.embedding_lookup(position_enc, position_ind)
# masks
if masking:
outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)
return tf.to_float(outputs)