-
Notifications
You must be signed in to change notification settings - Fork 486
/
Copy pathCNN.py
98 lines (76 loc) · 3.83 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import struct
import tensorflow as tf
def load_data():
with open('train-labels.idx1-ubyte', 'rb') as labels:
magic, n = struct.unpack('>II', labels.read(8))
train_labels = np.fromfile(labels, dtype=np.uint8)
with open('train-images.idx3-ubyte', 'rb') as imgs:
magic, num, nrows, ncols = struct.unpack('>IIII', imgs.read(16))
train_images = np.fromfile(imgs, dtype=np.uint8).reshape(num,784)
with open('t10k-labels.idx1-ubyte', 'rb') as labels:
magic, n = struct.unpack('>II', labels.read(8))
test_labels = np.fromfile(labels, dtype=np.uint8)
with open('t10k-images.idx3-ubyte', 'rb') as imgs:
magic, num, nrows, ncols = struct.unpack('>IIII', imgs.read(16))
test_images = np.fromfile(imgs, np.uint8).reshape(num,784)
return train_images, train_labels, test_images, test_labels
def cnn_model_fn(features, labels, mode):
input_layer = tf.cast(tf.reshape(features['x'], [-1, 28, 28, 1]), tf.float16)
conv1 = tf.layers.conv2d(inputs=input_layer,
filters=16,
kernel_size=[5,5],
padding='same',
activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2,2], strides=2)
conv2 = tf.layers.conv2d(inputs=pool1,
filters=32,
kernel_size=[5,5],
padding='same',
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size = [2,2], strides=2)
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 32])
dense = tf.layers.dense(inputs=pool2_flat, units=128, activation=tf.nn.relu)
logits = tf.layers.dense(inputs=dense, units=10)
predictions = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = { 'accuracy': tf.metrics.accuracy(labels=labels, predictions=predictions['classes'])}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
if __name__ == '__main__':
training_data, training_labels, testing_data, testing_labels = load_data()
num_epochs = 10
classifier = tf.estimator.Estimator(model_fn=cnn_model_fn,
model_dir='tmp/')
input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": training_data},
y=training_labels,
batch_size=32,
num_epochs=None,
shuffle=True)
for i in range(num_epochs):
classifier.train(input_fn=input_fn, steps=1000)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': testing_data},
y=testing_labels,
shuffle=False)
eval_results = classifier.evaluate(input_fn=eval_input_fn)
print('these are the results of my evaluations')
print(eval_results)
pred_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': testing_data},
y=testing_labels,
num_epochs=1,
shuffle=False)
pred_results = classifier.predict(input_fn=pred_input_fn)
predicted_classes = [p['classes'] for p in pred_results]