forked from nfnt/resize
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilters.go
269 lines (230 loc) · 6.9 KB
/
filters.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
Copyright (c) 2012, Jan Schlicht <[email protected]>
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
*/
package resize
import (
"image"
"image/color"
"math"
)
// restrict an input float32 to the range of uint16 values
func clampToUint16(x float32) (y uint16) {
y = uint16(x)
if x < 0 {
y = 0
} else if x > float32(0xfffe) {
// "else if x > float32(0xffff)" will cause overflows!
y = 0xffff
}
return
}
// describe a resampling filter
type filterModel struct {
// resampling is done by convolution with a (scaled) kernel
kernel func(float32) float32
// instead of blurring an image before downscaling to avoid aliasing,
// the filter is scaled by a factor which leads to a similar effect
factor [2]float32
// for optimized access to image points
converter
// temporaries used by Interpolate
tempRow, tempCol []colorArray
}
func (f *filterModel) convolution1d(x float32, p []colorArray, factor float32) colorArray {
var k float32
var sum float32 = 0
c := colorArray{0.0, 0.0, 0.0, 0.0}
for j := range p {
k = f.kernel((x - float32(j)) / factor)
sum += k
for i := range c {
c[i] += p[j][i] * k
}
}
// normalize values
for i := range c {
c[i] = c[i] / sum
}
return c
}
func (f *filterModel) Interpolate(x, y float32) color.RGBA64 {
xf, yf := int(x)-len(f.tempRow)/2+1, int(y)-len(f.tempCol)/2+1
x -= float32(xf)
y -= float32(yf)
for i := range f.tempCol {
for j := range f.tempRow {
f.tempRow[j] = f.at(xf+j, yf+i)
}
f.tempCol[i] = f.convolution1d(x, f.tempRow, f.factor[0])
}
c := f.convolution1d(y, f.tempCol, f.factor[1])
return color.RGBA64{
clampToUint16(c[0]),
clampToUint16(c[1]),
clampToUint16(c[2]),
clampToUint16(c[3]),
}
}
// createFilter tries to find an optimized converter for the given input image
// and initializes all filterModel members to their defaults
func createFilter(img image.Image, factor [2]float32, size int, kernel func(float32) float32) (f Filter) {
sizeX := size * (int(math.Ceil(float64(factor[0]))))
sizeY := size * (int(math.Ceil(float64(factor[1]))))
switch img.(type) {
default:
f = &filterModel{
kernel, factor,
&genericConverter{img},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
case *image.RGBA:
f = &filterModel{
kernel, factor,
&rgbaConverter{img.(*image.RGBA)},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
case *image.RGBA64:
f = &filterModel{
kernel, factor,
&rgba64Converter{img.(*image.RGBA64)},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
case *image.Gray:
f = &filterModel{
kernel, factor,
&grayConverter{img.(*image.Gray)},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
case *image.Gray16:
f = &filterModel{
kernel, factor,
&gray16Converter{img.(*image.Gray16)},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
case *image.YCbCr:
f = &filterModel{
kernel, factor,
&ycbcrConverter{img.(*image.YCbCr)},
make([]colorArray, sizeX), make([]colorArray, sizeY),
}
}
return
}
// Return a filter kernel that performs nearly identically to the provided
// kernel, but generates and uses a precomputed table rather than executing
// the kernel for each evaluation. The table is generated with tableSize
// values that cover the kernal domain from -maxX to +maxX. The input kernel
// is assumed to be symmetrical around 0, so the table only includes values
// from 0 to maxX.
func tableKernel(kernel func(float32) float32, tableSize int,
maxX float32) func(float32) float32 {
// precompute an array of filter coefficients
weights := make([]float32, tableSize+1)
for i := range weights {
weights[i] = kernel(maxX * float32(i) / float32(tableSize))
}
weights[tableSize] = 0.0
return func(x float32) float32 {
if x < 0.0 {
x = -x
}
indf := x / maxX * float32(tableSize)
ind := int(indf)
if ind >= tableSize {
return 0.0
}
return weights[ind] + (weights[ind+1]-weights[ind])*(indf-float32(ind))
}
}
// Nearest-neighbor interpolation
func NearestNeighbor(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 2, func(x float32) (y float32) {
if x >= -0.5 && x < 0.5 {
y = 1
} else {
y = 0
}
return
})
}
// Bilinear interpolation
func Bilinear(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 2, func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = 1 - absX
} else {
y = 0
}
return
})
}
// Bicubic interpolation (with cubic hermite spline)
func Bicubic(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, splineKernel(0, 0.5))
}
// Mitchell-Netravali interpolation
func MitchellNetravali(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, splineKernel(1.0/3.0, 1.0/3.0))
}
func splineKernel(B, C float32) func(float32) float32 {
factorA := 2.0 - 1.5*B - C
factorB := -3.0 + 2.0*B + C
factorC := 1.0 - 1.0/3.0*B
factorD := -B/6.0 - C
factorE := B + 5.0*C
factorF := -2.0*B - 8.0*C
factorG := 4.0/3.0*B + 4.0*C
return func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = absX*absX*(factorA*absX+factorB) + factorC
} else if absX <= 2 {
y = absX*(absX*(absX*factorD+factorE)+factorF) + factorG
} else {
y = 0
}
return
}
}
func lanczosKernel(a uint) func(float32) float32 {
return func(x float32) (y float32) {
if x > -float32(a) && x < float32(a) {
y = float32(Sinc(float64(x))) * float32(Sinc(float64(x/float32(a))))
} else {
y = 0
}
return
}
}
const lanczosTableSize = 300
// Lanczos interpolation (a=2)
func Lanczos2(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, lanczosKernel(2))
}
// Lanczos interpolation (a=2) using a look-up table
// to speed up computation
func Lanczos2Lut(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4,
tableKernel(lanczosKernel(2), lanczosTableSize, 2.0))
}
// Lanczos interpolation (a=3)
func Lanczos3(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 6, lanczosKernel(3))
}
// Lanczos interpolation (a=3) using a look-up table
// to speed up computation
func Lanczos3Lut(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 6,
tableKernel(lanczosKernel(3), lanczosTableSize, 3.0))
}