forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_kie_token_ser.py
177 lines (153 loc) · 5.69 KB
/
predict_kie_token_ser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import numpy as np
import time
import tools.infer.utility as utility
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.visual import draw_ser_results
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppstructure.utility import parse_args
from paddleocr import PaddleOCR
logger = get_logger()
class SerPredictor(object):
def __init__(self, args):
self.ocr_engine = PaddleOCR(
use_angle_cls=args.use_angle_cls,
det_model_dir=args.det_model_dir,
rec_model_dir=args.rec_model_dir,
show_log=False,
use_gpu=args.use_gpu)
pre_process_list = [{
'VQATokenLabelEncode': {
'algorithm': args.kie_algorithm,
'class_path': args.ser_dict_path,
'contains_re': False,
'ocr_engine': self.ocr_engine,
'order_method': args.ocr_order_method,
}
}, {
'VQATokenPad': {
'max_seq_len': 512,
'return_attention_mask': True
}
}, {
'VQASerTokenChunk': {
'max_seq_len': 512,
'return_attention_mask': True
}
}, {
'Resize': {
'size': [224, 224]
}
}, {
'NormalizeImage': {
'std': [58.395, 57.12, 57.375],
'mean': [123.675, 116.28, 103.53],
'scale': '1',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': [
'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
'image', 'labels', 'segment_offset_id', 'ocr_info',
'entities'
]
}
}]
postprocess_params = {
'name': 'VQASerTokenLayoutLMPostProcess',
"class_path": args.ser_dict_path,
}
self.preprocess_op = create_operators(pre_process_list,
{'infer_mode': True})
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'ser', logger)
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
data = transform(data, self.preprocess_op)
if data[0] is None:
return None, 0
starttime = time.time()
for idx in range(len(data)):
if isinstance(data[idx], np.ndarray):
data[idx] = np.expand_dims(data[idx], axis=0)
else:
data[idx] = [data[idx]]
for idx in range(len(self.input_tensor)):
self.input_tensor[idx].copy_from_cpu(data[idx])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = outputs[0]
post_result = self.postprocess_op(
preds, segment_offset_ids=data[6], ocr_infos=data[7])
elapse = time.time() - starttime
return post_result, data, elapse
def main(args):
image_file_list = get_image_file_list(args.image_dir)
ser_predictor = SerPredictor(args)
count = 0
total_time = 0
os.makedirs(args.output, exist_ok=True)
with open(
os.path.join(args.output, 'infer.txt'), mode='w',
encoding='utf-8') as f_w:
for image_file in image_file_list:
img, flag, _ = check_and_read(image_file)
if not flag:
img = cv2.imread(image_file)
img = img[:, :, ::-1]
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
ser_res, _, elapse = ser_predictor(img)
ser_res = ser_res[0]
res_str = '{}\t{}\n'.format(
image_file,
json.dumps(
{
"ocr_info": ser_res,
}, ensure_ascii=False))
f_w.write(res_str)
img_res = draw_ser_results(
image_file,
ser_res,
font_path=args.vis_font_path, )
img_save_path = os.path.join(args.output,
os.path.basename(image_file))
cv2.imwrite(img_save_path, img_res)
logger.info("save vis result to {}".format(img_save_path))
if count > 0:
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
if __name__ == "__main__":
main(parse_args())