-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
356 lines (271 loc) · 14.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import argparse
import subprocess
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import json
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.dirname(BASE_DIR))
import provider
# import pointnet_part_seg as model
import pointnet_archeological_detection as model
# DEFAULT SETTINGS
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=1, help='GPU to use [default: GPU 0]')
parser.add_argument('--batch', type=int, default=4, help='Batch Size during training [default: 4]')
parser.add_argument('--epoch', type=int, default=100, help='Epoch to run [default: 100]')
parser.add_argument('--point_num', type=int, default=512, help='Point Number [256/512/1024/2048]')
parser.add_argument('--output_dir', type=str, default='train_results', help='Directory that stores all training logs and trained models')
parser.add_argument('--wd', type=float, default=0, help='Weight Decay [Default: 0.0]')
FLAGS = parser.parse_args()
hdf5_data_dir = os.path.join(BASE_DIR, '.\data\hdf5_data')
# MAIN SCRIPT
point_num = FLAGS.point_num
batch_size = FLAGS.batch
output_dir = FLAGS.output_dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
color_map_file = os.path.join(hdf5_data_dir, 'part_color_mapping.json')
color_map = json.load(open(color_map_file, 'r'))
# all_obj_cats_file = os.path.join(hdf5_data_dir, 'all_object_categories.txt')
# fin = open(all_obj_cats_file, 'r')
# lines = [line.rstrip() for line in fin.readlines()]
# all_obj_cats = [(line.split()[0], line.split()[1]) for line in lines]
# fin.close()
#
# all_cats = json.load(open(os.path.join(hdf5_data_dir, 'overallid_to_catid_partid.json'), 'r'))
# NUM_CATEGORIES = 16
# NUM_PART_CATS = len(all_cats)
NUM_PART_CATS = 13
print('#### Batch Size: {0}'.format(batch_size))
print('#### Point Number: {0}'.format(point_num))
print('#### Training using GPU: {0}'.format(FLAGS.gpu))
DECAY_STEP = 16881 * 20
DECAY_RATE = 0.5
LEARNING_RATE_CLIP = 1e-5
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP * 2)
BN_DECAY_CLIP = 0.99
BASE_LEARNING_RATE = 0.001
MOMENTUM = 0.9
TRAINING_EPOCHES = FLAGS.epoch
print('### Training epoch: {0}'.format(TRAINING_EPOCHES))
# TRAINING_FILE_LIST = os.path.join(hdf5_data_dir, 'h5_filelist_training.txt')
# TESTING_FILE_LIST = os.path.join(hdf5_data_dir, 'h5_filelist_training')
MODEL_STORAGE_PATH = os.path.join(output_dir, 'trained_models')
if not os.path.exists(MODEL_STORAGE_PATH):
os.mkdir(MODEL_STORAGE_PATH)
LOG_STORAGE_PATH = os.path.join(output_dir, 'logs')
if not os.path.exists(LOG_STORAGE_PATH):
os.mkdir(LOG_STORAGE_PATH)
SUMMARIES_FOLDER = os.path.join(output_dir, 'summaries')
if not os.path.exists(SUMMARIES_FOLDER):
os.mkdir(SUMMARIES_FOLDER)
DIAGRAMS_FOLDER = os.path.join(output_dir, 'diagrams')
if not os.path.exists(DIAGRAMS_FOLDER):
os.mkdir(DIAGRAMS_FOLDER)
def printout(flog, data):
print(data)
flog.write(data + '\n')
def placeholder_inputs():
pointclouds_ph = tf.placeholder(tf.float32, shape=(batch_size, point_num, 3))
labels_ph = tf.placeholder(tf.int32, shape=(batch_size))
seg_ph = tf.placeholder(tf.int32, shape=(batch_size, point_num))
return pointclouds_ph, seg_ph
# def convert_label_to_one_hot(labels):
# label_one_hot = np.zeros((labels.shape[0], NUM_CATEGORIES))
# for idx in range(labels.shape[0]):
# label_one_hot[idx, labels[idx]] = 1
# return label_one_hot
def train():
training_loss_value = []
with tf.Graph().as_default():
with tf.device('/gpu:' + str(FLAGS.gpu)):
pointclouds_ph, seg_ph = placeholder_inputs()
is_training_ph = tf.placeholder(tf.bool, shape=())
batch = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # base learning rate
batch * batch_size, # global_var indicating the number of steps
DECAY_STEP, # step size
DECAY_RATE, # decay rate
staircase=True # Stair-case or continuous decreasing
)
learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP)
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * batch_size,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
lr_op = tf.summary.scalar('learning_rate', learning_rate)
batch_op = tf.summary.scalar('batch_number', batch)
bn_decay_op = tf.summary.scalar('bn_decay', bn_decay)
seg_pred, end_points = model.get_model(pointclouds_ph, is_training=is_training_ph, \
bn_decay=bn_decay, part_num=NUM_PART_CATS, batch_size=batch_size, \
num_point=point_num, weight_decay=FLAGS.wd)
# model.py defines both classification net and segmentation net, which share the common global feature extractor network.
# In model.get_loss, we define the total loss to be weighted sum of the classification and segmentation losses.
# Here, we only train for segmentation network. Thus, we set weight to be 1.0.
loss, seg_loss, per_instance_seg_loss, per_instance_seg_pred_res \
= model.get_loss(seg_pred, seg_ph, 1.0, end_points)
total_training_loss_ph = tf.placeholder(tf.float32, shape=())
total_testing_loss_ph = tf.placeholder(tf.float32, shape=())
seg_training_loss_ph = tf.placeholder(tf.float32, shape=())
seg_testing_loss_ph = tf.placeholder(tf.float32, shape=())
seg_training_acc_ph = tf.placeholder(tf.float32, shape=())
seg_testing_acc_ph = tf.placeholder(tf.float32, shape=())
seg_testing_acc_avg_cat_ph = tf.placeholder(tf.float32, shape=())
total_train_loss_sum_op = tf.summary.scalar('total_training_loss', total_training_loss_ph)
total_test_loss_sum_op = tf.summary.scalar('total_testing_loss', total_testing_loss_ph)
seg_train_loss_sum_op = tf.summary.scalar('seg_training_loss', seg_training_loss_ph)
seg_test_loss_sum_op = tf.summary.scalar('seg_testing_loss', seg_testing_loss_ph)
seg_train_acc_sum_op = tf.summary.scalar('seg_training_acc', seg_training_acc_ph)
seg_test_acc_sum_op = tf.summary.scalar('seg_testing_acc', seg_testing_acc_ph)
seg_test_acc_avg_cat_op = tf.summary.scalar('seg_testing_acc_avg_cat', seg_testing_acc_avg_cat_ph)
train_variables = tf.trainable_variables()
trainer = tf.train.AdamOptimizer(learning_rate)
train_op = trainer.minimize(loss, var_list=train_variables, global_step=batch)
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
train_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/train', sess.graph)
test_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/test')
fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w')
fcmd.write(str(FLAGS))
fcmd.close()
# write logs to the disk
flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w')
def train_one_epoch(epoch_num):
is_training = True
train_filename = os.path.join(hdf5_data_dir, "data_training.h5")
printout(flog, 'Loading train file ' + train_filename)
cur_data, cur_seg = provider.loadDataFile_with_seg(train_filename)
num_data = len(cur_data)
num_batch = num_data // batch_size
total_loss = 0.0
total_seg_loss = 0.0
total_seg_acc = 0.0
for i in range(num_batch):
begidx = i * batch_size
endidx = (i + 1) * batch_size
feed_dict = {
pointclouds_ph: cur_data[begidx: endidx, ...],
seg_ph: cur_seg[begidx: endidx, ...],
is_training_ph: is_training,
}
_, loss_val, seg_loss_val, per_instance_seg_loss_val, seg_pred_val, pred_seg_res \
= sess.run([train_op, loss, seg_loss, per_instance_seg_loss, seg_pred, \
per_instance_seg_pred_res], feed_dict=feed_dict)
'''
seg_pred_res = sess.run([seg_pred], feed_dict={
pointclouds_ph: cur_data[begidx: endidx, ...],
is_training_ph: is_training,
})
seg_pred_res = np.array(seg_pred_res)[0, ...][0, ...]
seg_pred_val = np.argmax(seg_pred_res, axis=1)[:batch_size*point_num]
print seg_pred_val
'''
per_instance_part_acc = np.mean(pred_seg_res == cur_seg[begidx: endidx, ...], axis=1)
average_part_acc = np.mean(per_instance_part_acc)
total_loss += loss_val
total_seg_loss += seg_loss_val
total_seg_acc += average_part_acc
total_loss = total_loss * 1.0 / num_batch
total_seg_loss = total_seg_loss * 1.0 / num_batch
total_seg_acc = total_seg_acc * 1.0 / num_batch
lr_sum, bn_decay_sum, batch_sum, train_loss_sum, train_seg_loss_sum, train_seg_acc_sum \
= sess.run([lr_op, bn_decay_op, batch_op, total_train_loss_sum_op, \
seg_train_loss_sum_op, seg_train_acc_sum_op], feed_dict={total_training_loss_ph: total_loss, \
seg_training_loss_ph: total_seg_loss,
seg_training_acc_ph: total_seg_acc})
train_writer.add_summary(train_loss_sum, epoch_num)
train_writer.add_summary(train_seg_loss_sum, epoch_num)
train_writer.add_summary(lr_sum, epoch_num)
train_writer.add_summary(bn_decay_sum, epoch_num)
train_writer.add_summary(train_seg_acc_sum, epoch_num)
train_writer.add_summary(batch_sum, epoch_num)
printout(flog, '\tTraining Total Mean_loss: %f' % total_loss)
printout(flog, '\t\tTraining Seg Mean_loss: %f' % total_seg_loss)
printout(flog, '\t\tTraining Seg Accuracy: %f' % total_seg_acc)
training_loss_value.append(total_loss)
def eval_one_epoch(epoch_num):
is_training = False
total_loss = 0.0
total_seg_loss = 0.0
total_seg_acc = 0.0
total_seen = 0
test_filename = os.path.join(hdf5_data_dir, "data_testing.h5")
printout(flog, 'Loading test file ' + test_filename)
cur_data, cur_seg = provider.loadDataFile_with_seg(test_filename)
num_data = len(cur_data)
num_batch = num_data // batch_size
for i in range(num_batch):
begidx = i * batch_size
endidx = (i + 1) * batch_size
feed_dict = {
pointclouds_ph: cur_data[begidx: endidx, ...],
seg_ph: cur_seg[begidx: endidx, ...],
is_training_ph: is_training,
}
loss_val, seg_loss_val, per_instance_seg_loss_val, seg_pred_val, pred_seg_res \
= sess.run([loss, seg_loss, per_instance_seg_loss, seg_pred, \
per_instance_seg_pred_res], feed_dict=feed_dict)
'''
seg_pred_res = sess.run([seg_pred], feed_dict={
pointclouds_ph: cur_data[begidx: endidx, ...],
is_training_ph: is_training,
})
seg_pred_res = np.array(seg_pred_res)[0, ...][0, ...]
seg_pred_val = np.argmax(seg_pred_res, axis=1)[:batch_size*point_num]
print seg_pred_val
'''
per_instance_part_acc = np.mean(pred_seg_res == cur_seg[begidx: endidx, ...], axis=1)
average_part_acc = np.mean(per_instance_part_acc)
total_seen += 1
total_loss += loss_val
total_seg_loss += seg_loss_val
total_seg_acc += average_part_acc
total_loss = total_loss * 1.0 / total_seen
total_seg_loss = total_seg_loss * 1.0 / total_seen
total_seg_acc = total_seg_acc * 1.0 / total_seen
test_loss_sum, test_seg_loss_sum, test_seg_acc_sum \
= sess.run([total_test_loss_sum_op, seg_test_loss_sum_op, seg_test_acc_sum_op], \
feed_dict={total_testing_loss_ph: total_loss, seg_testing_loss_ph: total_seg_loss,
seg_testing_acc_ph: total_seg_acc})
test_writer.add_summary(test_loss_sum, epoch_num + 1)
test_writer.add_summary(test_seg_loss_sum, epoch_num + 1)
test_writer.add_summary(test_seg_acc_sum, epoch_num + 1)
printout(flog, '\tTesting Total Mean_loss: %f' % total_loss)
printout(flog, '\t\tTesting Seg Mean_loss: %f' % total_seg_loss)
printout(flog, '\t\tTesting Seg Accuracy: %f' % total_seg_acc)
if not os.path.exists(MODEL_STORAGE_PATH):
os.mkdir(MODEL_STORAGE_PATH)
for epoch in range(TRAINING_EPOCHES):
printout(flog, '\n>>> Training for the epoch %d/%d ...' % (epoch + 1, TRAINING_EPOCHES))
train_one_epoch(epoch)
printout(flog, '\n<<< Testing on the test dataset ...')
eval_one_epoch(epoch)
if (epoch + 1) % 10 == 0:
cp_filename = saver.save(sess, os.path.join(MODEL_STORAGE_PATH, 'epoch_' + str(epoch + 1) + '.ckpt'))
printout(flog, 'Successfully store the checkpoint model into ' + cp_filename)
flog.flush()
plt.plot(np.arange(1, TRAINING_EPOCHES + 1), training_loss_value, 'ro')
plt.plot(np.arange(1, TRAINING_EPOCHES + 1), training_loss_value)
plt.ylabel('Total Mean Loss')
plt.xlabel('Epoch')
plt.title('Total Mean Loss per Epoch')
plt.savefig(DIAGRAMS_FOLDER + '/total_mean_loss.png')
flog.close()
if __name__ == '__main__':
train()