-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathNets.py
executable file
·104 lines (87 loc) · 3.64 KB
/
Nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import models
class MLP(nn.Module):
def __init__(self, dim_in, dim_hidden, dim_out):
super(MLP, self).__init__()
self.layer_input = nn.Linear(dim_in, 512)
self.relu = nn.ReLU()
self.dropout = nn.Dropout()
self.layer_hidden1 = nn.Linear(512, 256)
self.layer_hidden2 = nn.Linear(256, 256)
self.layer_hidden3 = nn.Linear(256, 128)
self.layer_out = nn.Linear(128, dim_out)
self.softmax = nn.Softmax(dim=1)
self.weight_keys = [['layer_input.weight', 'layer_input.bias'],
['layer_hidden1.weight', 'layer_hidden1.bias'],
['layer_hidden2.weight', 'layer_hidden2.bias'],
['layer_hidden3.weight', 'layer_hidden3.bias'],
['layer_out.weight', 'layer_out.bias']
]
def forward(self, x):
x = x.view(-1, x.shape[1]*x.shape[-2]*x.shape[-1])
x = self.layer_input(x)
x = self.relu(x)
x = self.layer_hidden1(x)
x = self.relu(x)
x = self.layer_hidden2(x)
x = self.relu(x)
x = self.layer_hidden3(x)
x = self.relu(x)
x = self.layer_out(x)
return self.softmax(x)
class CNNMnist(nn.Module):
def __init__(self, args):
super(CNNMnist, self).__init__()
self.conv1 = nn.Conv2d(args.num_channels, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, args.num_classes)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3])
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class CNNCifar(nn.Module):
def __init__(self, args):
super(CNNCifar, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 100)
self.fc3 = nn.Linear(100, args.num_classes)
# self.weight_keys = [['fc3.weight', 'fc3.bias'],
# ['fc2.weight', 'fc2.bias'],
# ['fc1.weight', 'fc1.bias'],
# ['conv2.weight', 'conv2.bias'],
# ['conv1.weight', 'conv1.bias'],
# ]
# self.weight_keys = [['conv1.weight', 'conv1.bias'],
# ['conv2.weight', 'conv2.bias'],
# ['fc2.weight', 'fc2.bias'],
# ['fc3.weight', 'fc3.bias'],
# ['fc1.weight', 'fc1.bias'],
# ]
self.weight_keys = [['fc1.weight', 'fc1.bias'],
['fc2.weight', 'fc2.bias'],
['fc3.weight', 'fc3.bias'],
['conv2.weight', 'conv2.bias'],
['conv1.weight', 'conv1.bias'],
]
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)