-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathclassify.py
104 lines (94 loc) · 5.42 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 31 14:04:38 2019
@author: WT
"""
from nlptoolkit.utils.misc import save_as_pickle
from nlptoolkit.classification.models.GCN.trainer import train_and_fit as GCN
from nlptoolkit.classification.models.BERT.trainer import train_and_fit as BERT
from nlptoolkit.classification.models.XLNet.trainer import train_and_fit as XLNet
from nlptoolkit.classification.models.GAT.trainer import train_and_fit as GAT
from nlptoolkit.classification.models.ALBERT.trainer import train_and_fit as ALBERT
from nlptoolkit.classification.models.XLMRoBERTa.trainer import train_and_fit as XLMRoBERTa
from nlptoolkit.classification.models.GIN.trainer import train_and_fit as GIN
from nlptoolkit.classification.models.infer import infer_from_trained
import logging
from argparse import ArgumentParser
logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \
datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logger = logging.getLogger('__file__')
'''
Classification input data files:
train.csv - columns: text, labels
infer.csv - columns: text, optional labels
Output file:
results.csv - columns: index, predicted labels
'''
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--train_data", type=str, default="./data/train.csv", help="training data csv file path")
parser.add_argument("--infer_data", type=str, default="./data/infer.csv", help="infer data csv file path")
parser.add_argument("--max_vocab_len", type=int, default=7000, \
help="GCN, GAT, GIN: Max vocab size to consider based on top frequency tokens")
parser.add_argument("--hidden_size_1", type=int, default=330, \
help="Size of first GCN hidden weights")
parser.add_argument("--hidden_size_2", type=int, default=130, \
help="Size of second GCN hidden weights")
parser.add_argument('--batched', type=int, default=0,\
help= 'For GCN, GIN - 0: no batch training ; 1: do batch training')
parser.add_argument('--hidden', type=int, default=8, help='Number of hidden units for GAT')
parser.add_argument('--nb_heads', type=int, default=8, help='Number of head attentions for GAT')
parser.add_argument("--tokens_length", type=int, default=200, help="Max tokens length for BERT")
parser.add_argument("--num_classes", type=int, default=66, help="Number of prediction classes (starts from integer 0)")
parser.add_argument("--train_test_split", type=int, default=1, help="0: No, 1: Yes (Only activate if infer.csv contains labelled data)")
parser.add_argument("--test_ratio", type=float, default=0.1, help="GCN: Ratio of test to training nodes")
parser.add_argument("--batch_size", type=int, default=32, help="Training batch size")
parser.add_argument("--gradient_acc_steps", type=int, default=2, help="No. of steps of gradient accumulation")
parser.add_argument("--max_norm", type=float, default=1.0, help="Clipped gradient norm")
parser.add_argument("--num_epochs", type=int, default=6125, help="No of epochs")
parser.add_argument("--lr", type=float, default=0.0007, help="learning rate")
parser.add_argument("--use_cuda", type=int, default=0, help="Use cuda for GAT (0: No , 1: Yes)")
parser.add_argument("--model_no", type=int, default=0, help='''Model ID: (0: Graph Convolution Network (GCN),
\n1: BERT,
\n2: XLNet,
\n3: Graph Attention Network (GAT))
\n4: ALBERT
\n5: XLMRoBERTa
\n6: GIN''')
parser.add_argument("--train", type=int, default=1, help="Train model on dataset")
parser.add_argument("--infer", type=int, default=1, help="Infer input sentence labels from trained model")
args = parser.parse_args()
save_as_pickle("args.pkl", args)
if args.train:
if args.model_no == 0:
net = GCN(args)
elif args.model_no == 1:
net = BERT(args)
elif args.model_no == 2:
XLNet(args)
elif args.model_no == 3:
net = GAT(args)
elif args.model_no == 4:
net = ALBERT(args)
elif args.model_no == 5:
net = XLMRoBERTa(args)
elif args.model_no == 6:
net = GIN(args)
else:
print("Model selection not found.")
if args.infer:
if args.model_no in [0, 3, 6]:
logger.info("Infer function not compatible with GCN, GAT, GIN!")
else:
inferer = infer_from_trained(args)
while True:
opt = input("Choose an option:\n0: Infer from stdin user input\n1: Infer from file (Input file: \'.\data\input.txt\'\
Output file: '.\data\output.txt\'\n")
if opt == '0':
inferer.infer_from_input()
break
elif opt == '1':
inferer.infer_from_file()
break
else:
print("Invalid option, please try again.")