-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathner.py
48 lines (43 loc) · 2.58 KB
/
ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 14 18:04:45 2019
@author: WT
"""
from nlptoolkit.ner.trainer import train_and_fit
from nlptoolkit.ner.infer import infer_from_trained
from nlptoolkit.utils.misc import save_as_pickle, load_pickle
from argparse import ArgumentParser
import logging
logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \
datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logger = logging.getLogger('__file__')
if __name__=="__main__":
parser = ArgumentParser()
parser.add_argument("--train_path", type=str, default="./data/ner/conll2003/eng.train.txt", help="Path to training data txt file")
parser.add_argument("--test_path", type=str, default="./data/ner/conll2003/eng.testa.txt", help="Path to test data txt file (if any)")
parser.add_argument("--num_classes", type=int, default=9, help="Number of prediction classes (starts from integer 0)")
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--tokens_length", type=int, default=128, help="Max tokens length for BERT")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--gradient_acc_steps", type=int, default=1, help="No. of steps of gradient accumulation")
parser.add_argument("--max_norm", type=float, default=1.0, help="Clipped gradient norm")
parser.add_argument("--num_epochs", type=int, default=9, help="No of epochs")
parser.add_argument("--lr", type=float, default=5e-5, help="learning rate")
parser.add_argument("--model_no", type=int, default=0, help="Model ID: (0: BERT)")
parser.add_argument("--model_type", type=str, default='bert-base-uncased', help="Model type")
parser.add_argument("--train", type=int, default=0, help="Train model on dataset")
parser.add_argument("--infer", type=int, default=1, help="Infer labels from trained model")
args = parser.parse_args()
save_as_pickle("args.pkl", args)
if args.train:
train_and_fit(args)
if args.infer:
inferer = infer_from_trained(args)
inferer.infer_from_input()