-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmodel_wideresnet.py
114 lines (97 loc) · 3.91 KB
/
model_wideresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Wide Resnet model adapted from https://github.com/xternalz/WideResNet-pytorch
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
out = self.conv1(x)
else:
out = self.conv1(self.relu1(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(self.relu2(self.bn2(out)))
if not self.equalInOut:
return torch.add(self.convShortcut(x), out)
else:
return torch.add(x, out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
block, in_planes, out_planes, nb_layers, stride, dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(nb_layers):
layers.append(block(i == 0 and in_planes or out_planes,
out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth, num_classes, widen_factor=1, drop_rate=0.0, init_scale=1.0):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor,
32 * widen_factor, 64 * widen_factor]
assert((depth - 4) % 6 == 0)
n = (depth - 4) // 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, 1, drop_rate)
# 2nd block
self.block2 = NetworkBlock(
n, nChannels[1], nChannels[2], block, 2, drop_rate)
# 3rd block
self.block3 = NetworkBlock(
n, nChannels[2], nChannels[3], block, 2, drop_rate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, init_scale * math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
size = m.weight.size()
fan_out = size[0] # number of rows
fan_in = size[1] # number of columns
variance = math.sqrt(2.0/(fan_in + fan_out))
m.weight.data.normal_(0.0, init_scale * variance)
def forward(self, x):
out = self.forward_repr(x)
return self.fc(out)
def forward_repr(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return out