-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLIN_DSGE_g.m
165 lines (138 loc) · 4.57 KB
/
LIN_DSGE_g.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
%%==============================================================================
%% Solve linear DSGE model calibrated at weekly frequency
%% Assume gradual wage adjustment
%%==============================================================================
function [AMAT,BMAT,SS,xeq,xvari,s3]=LIN_DSGE_g(w,gamma,alpha)
global delta eta c a sigma_a omega rho_a s z q f u varsigma uinv zeta
global W_bar C_bar TH_bar N_bar H_bar U_bar UC_bar UF_bar Y_bar
global wpos cpos thpos npos hpos upos ucpos ufpos ypos apos a_pos
%% --- Set up positions of variables ---
xlead = 1; % Number of leads in system (recruiting)
xlag = 1 ; % Number of lags in system (employment)
xnames = ['TH';'W ';'C ';'N ';'H ';'U ';'Y ';'A ';'A_'];
xnum = size(xnames,1); % Number of variables in system
xeq = xnum ; % Number of equations (same)
xvari=xnum-1;
colzero = 0+xlag*xnum; % Position counter for start of contemp. coefs
collead = 0+xlag*xnum+xnum; % Position counter for start of lead coefs
collag = 0 ;% Position counter for start of lag coefs
wzero = colzero+wpos;
czero = colzero+cpos;
thzero = colzero+thpos;
nzero = colzero+npos;
hzero = colzero+hpos;
uzero = colzero+upos;
yzero = colzero+ypos;
azero = colzero+apos;
a_zero = colzero+a_pos;
wlead = collead+wpos;
clead = collead+cpos;
thlead = collead+thpos;
nlead = collead+npos;
hlead = collead+hpos;
ulead = collead+upos;
ylead = collead+ypos;
alead = collead+apos;
a_lead = collead+a_pos;
wlag = collag+wpos;
clag = collag+cpos;
thlag = collag+thpos;
nlag = collag+npos;
hlag = collag+hpos;
ulag = collag+upos;
ylag = collag+ypos;
alag = collag+apos;
a_lag = collag+a_pos;
% Now we have one vector with all of the leads, contemporaneous and
% lags stacked in one column
% Determine number of total posible coefficients per equation:
xcoef = xeq*(xlag+xlead+1);
% Initialize the coeffienct matrix, where each
% row is an equation of the model
cof = zeros(xeq,xcoef) ; % Coef matrix --- Each row is an equation
%% --- Steady-state shares ---
xx=alpha.*N_bar.^alpha;
sa= w./xx ;
sb= (c.*a./q(TH_bar))./xx;
sc=c.*a./q(TH_bar).*(1-s).*delta./xx ;
s2=(c.*a.*s)./(q(TH_bar).*N_bar.^(alpha-1));
s3=1./((1-s).*N_bar)-1;
s4=UC_bar./(1-UC_bar);
s5=UC_bar./U_bar;
%% --- Equilibrium conditions: Setup coefficients vectors for each equation ---
% Euler equation
cof(1,azero) = 1-gamma.*sa-sb;
cof(1,nzero) = (alpha-1);
cof(1,thlead) = sc.*eta;
cof(1,thzero) =-eta.*sb;
cof(1,alead) = sc;
% Unemployment definition
cof(2,uzero) = s3;
cof(2,nlag) = 1;
% Definition of tightness
cof(3,thzero) = 1-eta;
cof(3,hzero) = -1;
cof(3,uzero) = 1;
% Employment fluctuations
cof(4,nzero) = 1;
cof(4,nlag) = -(1-s);
cof(4,hzero) = -s;
% Resource constraint
cof(5,yzero) = 1;
cof(5,azero) = -s2;
cof(5,czero) = s2-1;
cof(5,thzero) = -s2*eta;
cof(5,hzero) = -s2;
% Output
cof(6,yzero) =1;
cof(6,azero) =-1;
cof(6,nzero) =-alpha;
% Wage: gradual adjustment
cof(7,wzero)=1;
cof(7,azero)=-zeta.*gamma;
cof(7,wlag)=-(1-zeta);
% Correlated error term: technology
cof(8,azero) = -1;
cof(8,alag) = rho_a;
cof(8,a_zero) = 1;
% 0 = SHOCKS
cof(9,a_zero) = 1;
%% --- Use AIM procedure to solve model ---
uprbnd = 1+1e-8; % Tolerance values for AIM program
condn = 1e-8;
[cofb,rts,ia,nex,nnum,lgrts,mcode] = aim_eig(cof,xeq,xlag,xlead,condn,uprbnd);
scof = obstruct(cof,cofb,xeq,xlag,xlead);
s0 = scof(:,(xeq*xlag+1):xeq*(xlag+1)); %Contemp. coefs from obs.
%structure
amat=zeros(xeq*xlag,xeq*xlag); % Initialize A matrix
bmat=cofb(1:xeq,((xlag-1)*xeq+1):xlag*xeq); % Lag 1 coefficients
i=2;
while i<=xlag;
bmat=[bmat cofb(1:xeq,((xlag-i)*xeq+1):(xlag-i+1)*xeq)]; % Lag i coefs
i=i+1;
end;
amat(1:xeq,:)=bmat; % Coefs for equations
if xlag>1;
amat((length(cofb(:,1))+1):length(amat(:,1)),...
1:xeq*(xlag-1))=eye(xeq*(xlag-1));
end;
b = zeros(length(amat(:,1)),length(s0(1,:)));
b(1:length(s0(:,1)),1:length(s0(1,:))) = inv(s0); % Store coefs
% check unique/stable REE: mcode = 1
if mcode ~=1
'ERROR: NON_UNIQUE REE'
disp(['mcode = ' num2str(mcode)]) % unstable? non-unique?
end
AMAT=amat;
BMAT=b;
% to compute and plot impulse response use reduced form solution: x_t=amat*x_{t-1}+b*shock
SS=[];
SS(wpos,1)= W_bar;
SS(cpos,1)=C_bar;
SS(thpos,1)=TH_bar;
SS(npos,1)=N_bar;
SS(hpos,1)=H_bar;
SS(upos,1)=U_bar;
SS(ypos,1)=Y_bar;
SS(apos,1)=a;
SS(a_pos,1)=0;