-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_replacement_rate.do
201 lines (158 loc) · 5.06 KB
/
construct_replacement_rate.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
* compute the effective replacement rate of the UI program in the US
********* 1. Get historical data on total number of claims by UI program
import excel "data_replacement_rate.xlsx", ///
sheet("Table1-#persons_by_UI_program") firstrow clear
*Create time variables: we aggregate all claims at the monthly level
gen ref=strltrim(ReflectWeek1)
gen year=substr(ref, -4, 4 )
drop if year=="otes"
gen mp=strpos(ref,"/")
gen md=strrpos(ref,"/")
gen month=substr(ref, 1, mp-1)
gen day=substr(ref, mp+1, md-mp-1)
gen pb=strpos(day,"/")
replace day="5" if pb==1
destring month day year, replace
g date=mdy(month, day, year)
format date %td
drop ReflectWeek1 ref year mp md month day pb P Q
drop if _n>1596
destring State2, replace
g month=mofd(date)
format month %tm
/* Classification of claims by UI program*/
destring _all, replace
foreach var in UCFE3 UCX4 EUC19906 TEUC7 EUC08TierI8 ///
EUC08TierIII8 EUC08TierIV8 EUC08Total EB9 StateAB10 STC11 Total{
replace `var'=0 if `var'==.
}
* Regular UI
g regularUI=State2+UCFE3 + UCX4
/* extended benefits: EB program + specific State programs*/
g EB=EB9+StateAB10
/* Federal extensions */
g fed_extensions=EUC19906 +TEUC7 + EUC08Total
/* we get rid of Short term compesnation STC */
g all_claims=regularUI+EB+fed_extensions
collapse all_claims regularUI EB fed_extensions Total, by(month)
so month
save merged_RRdata, replace
********* 2. Get historical data on employment and unemployment data from CPS
/* employment levels */
import excel "data_replacement_rate.xlsx", ///
sheet("Table2-CPS-TotalEmploymentLevel") cellrange(A19:D338) firstrow clear
destring Year, replace
g m_origin=mofd(d(01jan1990))
g month=m_origin+_n-1
format month %tm
g employment=ObservationValue*1000
keep month employment
so month
merge month using merged_RRdata
ta _merge
keep if _merge==3
so month
drop _merge
save merged_RRdata, replace
/* unemployment levels */
import excel "data_replacement_rate.xlsx", ///
sheet("Table3-CPS-TotalUnempLevel") cellrange(A19:D338) firstrow clear
destring Year, replace
g m_origin=mofd(d(01jan1990))
g month=m_origin+_n-1
format month %tm
g unemployment=ObservationValue*1000
keep month unemployment
so month
merge month using merged_RRdata
ta _merge
keep if _merge==3
so month
drop _merge
save merged_RRdata, replace
/* Import separation rate data from CPS - using Shimer 2012*/
import excel "data_replacement_rate.xlsx", ///
sheet("Table4-CPS-SeparationRate") firstrow clear
keep if year>=1990
rename month month_old
g m_origin=mofd(d(01jan1990))
g month=m_origin+_n-1
format month %tm
keep month monthlyseparationprobability
so month
merge month using merged_RRdata
ta _merge
keep if _merge==3
so month
drop _merge
save merged_RRdata, replace
********* 3. Import financial claim data from State UI Program
import excel "data_replacement_rate.xlsx", ///
sheet("Table5-UIStateClaimData") cellrange(B6:K547) firstrow clear
rename Ending week
rename Payments Number_1stpayments
rename D Number_finalpayments
rename Paid000 Totalbenefitspaid
*create time variable - aggregate data at the monthly level
gen ref=strltrim(week)
gen year=substr(ref, -4, 4 )
gen mp=strpos(ref,"/")
gen md=strrpos(ref,"/")
gen month2=substr(ref, 1, mp-1)
destring month year, replace
g date=mdy(month, 1, year)
format date %td
g month=mofd(date)
keep month Number_1stpayments Number_finalpayments Totalbenefitspaid
so month
merge month using merged_RRdata
ta _merge
keep if _merge==3
so month
drop _merge
save merged_RRdata, replace
********* 4. Import job losers data from CPS
import excel "data_replacement_rate.xlsx", ///
sheet("Table6-CPSJobLosers") cellrange(A21:D340) firstrow clear
destring Year, replace
g m_origin=mofd(d(01jan1990))
g month=m_origin+_n-1
format month %tm
g joblosers=ObservationValue/100
keep month joblosers
so month
merge month using merged_RRdata
ta _merge
keep if _merge==3
so month
drop _merge
save merged_RRdata, replace
g claimants=(joblosers)*unemp
g date=dofm(month)
g month2=month(date)
********* 5. Compute replacement rate series. See appendix of the AEJ paper for details
g ratio=Total/claimants
*Control for seasonality: get rid of month fixed effects
char ratio [omit] 12
xi: reg ratio i.month2
predict m, res
g ratio_seas= m+_b[_cons]
preserve
* Determine the average replacement rate WBA/previous wage of individuals collecting benefits from admin data
/* Import replacement rate estimates for individuals collecting UI benefits: */
import excel "data_replacement_rate.xlsx", ///
sheet("Table7-RRofUIclaimants") firstrow clear
so year quarter
g date=mdy(quarter*3-2, 1, year)
so date
su Replac, d
* Replacement rate WBA/previous wage is very stable among individuals collecting benefits:
* between .458 and 474 with average=.465 and median=.464
* we take .465 as replacement rate WBA/previous wage
restore
* we use the average replacement rate (WBA/previous wage from BLS data (cf. above)
g RRate=min(.5, .465*ratio_seas)
keep month RRate
********* 6. Export historical replacement rate series in .xls
export excel using "effective replacement rate.xlsx", replace
erase merged_RRdata.dta