-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_tidal_profile.py
402 lines (325 loc) · 16.7 KB
/
generate_tidal_profile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# -*- coding: utf-8 -*-
"""
File contents:
Classes:
TidalProfileGenerator
Standalone functions:
get_tidal_data_from_upload
calc_tidal_prod
"""
import os
import pandas as pd
import numpy as np
import datetime
import warnings
import matplotlib.pyplot as plt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
from utide import solve, reconstruct
from validation import validate_all_parameters, log_error, strings_warnings
from config import TIDAL_DATA_DIR, ROOT_DIR
TIDAL_DEFAULTS = {'tidal_turbine_rated_power': 550,
'depth': 10,
'tidal_rotor_radius': 10,
'tidal_rotor_number': 2,
'maximum_cp': 0.42,
'tidal_cut_in_velocity': 0.5,
'tidal_cut_out_velocity': 3,
'tidal_inverter_efficiency': 0.9,
'tidal_turbine_losses': 10}
class TidalProfileGenerator:
"""
Class to upload tidal_current tidal data, extract tidal constituents,
extrapolate to tidal epoch, create tidal profiles, and calculate power profiles.
Parameters
----------
longitude: Site longitude in degrees
latitude: Site latitude in degrees
timezone: US timezone, options:
US/Alaska, US/Aleutian, US/Arizona, US/Central, US/East-Indiana, US/Eastern,
US/Hawaii, US/Indiana-Starke, US/Michigan, US/Mountain, US/Pacific,
US/Pacific-New, US/Samoa
num_trials: Number of tidal profiles to create
length_trials: Length of tidal profiles in hours
Methods
----------
get_tidal_data_from_upload: Uploads one year of tidal data
extract_tidal_constituents: Extracts tidal constituents from tidal current data
extrapolate_tidal_epoch: Creates tidal epoch of current data from tidal constituents
generate_tidal_profiles: Generates tidal profiles from tidal epoch
calc_tidal_prod: Calculates tidal production for each profile
tidal_checks: Creates several plots to verify that the tidal power calculation went OK
get_dc_to_ac: Returns the DC to AC ratio
get_losses: Returns system power losses
Calculated Attributes
----------
tidal_profiles: list of Pandas dataframes with tidal profiles
power_profiles: list of Pandas series' with tidal power profiles for a 1kW system
"""
def __init__(self, marine_data_filename, latitude, longitude, timezone, num_trials, length_trials, tidal_turbine_rated_power, depth,
tidal_rotor_radius, tidal_rotor_number, maximum_cp, tidal_cut_in_velocity, tidal_cut_out_velocity, tidal_inverter_efficiency,
tidal_turbine_losses, start_year=None, end_year=None, validate=True):
# Assign parameters
self.marine_data_filename = marine_data_filename
self.latitude = latitude
self.longitude = longitude
self.timezone = timezone
self.num_trials = num_trials
self.length_trials = length_trials
self.tidal_turbine_rated_power = tidal_turbine_rated_power
self.depth = depth
self.tidal_rotor_radius = tidal_rotor_radius
self.tidal_rotor_number = tidal_rotor_number
self.maximum_cp = maximum_cp
self.tidal_cut_in_velocity = tidal_cut_in_velocity
self.tidal_cut_out_velocity = tidal_cut_out_velocity
self.tidal_inverter_efficiency = tidal_inverter_efficiency
self.tidal_turbine_losses = tidal_turbine_losses
self.start_year = start_year
self.end_year = end_year
self.tidal_profiles = []
self.power_profiles = []
self.tmy_tidal = None
if validate:
# List of initialized parameters to validate
args_dict = {'latitude': self.latitude,
'longitude': self.longitude,
'timezone': self.timezone,
'num_trials': self.num_trials,
'length_trials': self.length_trials,
'tidal_turbine_rated_power': self.tidal_turbine_rated_power,
'depth': self.depth,
'tidal_rotor_radius': self.tidal_rotor_radius,
'tidal_rotor_number': self.tidal_rotor_number,
'tidal_inverter_efficiency': self.tidal_inverter_efficiency,
'maximum_cp': self.maximum_cp,
'tidal_turbine_losses': self.tidal_turbine_losses,
'tidal_cut_in_velocity': self.tidal_cut_in_velocity,
'tidal_cut_out_velocity': self.tidal_cut_out_velocity}
if start_year is not None:
args_dict['start_year'] = start_year
if end_year is not None:
args_dict['end_year'] = end_year
# Validate input parameters
validate_all_parameters(args_dict)
# Set default start and end years is not specified
if self.start_year is None:
self.start_year = 2017
if self.end_year is None:
self.end_year = self.start_year + 19
def get_tidal_data_from_upload(self):
"""Load tidal_current-specified tidal data"""
file = os.path.join(TIDAL_DATA_DIR, 'tidal_current', self.marine_data_filename)
self.tidal_current = pd.read_csv(file, header=0)
# Find the closest depth
def find_closest_depth(df, depth):
depth_columns = [col for col in df.columns if col.startswith('u_') or col.startswith('v_')]
depth_values = sorted(set(float(col.split('_')[1]) for col in depth_columns))
if depth < min(depth_values):
raise ValueError('Specified depth is smaller than any available depth')
elif depth > max(depth_values):
raise ValueError('Specified depth is larger than any available depth')
closest_depth = min(depth_values, key=lambda x: abs(x - depth))
return closest_depth
# Extract depth values
def extract_columns(df,depth):
closest_depth = find_closest_depth(df, depth)
depth_str = str(closest_depth)
u_col = f'u_{depth_str}'
v_col = f'v_{depth_str}'
if u_col in df.columns and v_col in df.columns:
extracted_df = df[['time', u_col, v_col]]
extracted_df.columns = ['time', 'u', 'v']
return extracted_df
self.tidal_current = extract_columns(self.tidal_current, self.depth)
self.tidal_current.set_index('time', inplace=True)
self.tidal_current.index = pd.to_datetime(self.tidal_current.index)
self.tidal_current = self.tidal_current.resample('H').mean()
def extrapolate_tidal_epoch(self, validate=True):
"""Extract tidal constituents from 8760 of tidal current data and extrapolate 19-year tidal epoch"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
coef = solve(t = self.tidal_current.index, u = self.tidal_current['u'], v = self.tidal_current['v'],
lat=self.latitude, method="ols", conf_int="linear",verbose=False)
epoch_index = pd.date_range(
start=f'1/1/{self.start_year}', end=f'1/1/{self.end_year+1}', freq='H', tz=self.timezone)[:-1]
tide = reconstruct(epoch_index, coef, verbose=False)
self.tidal_epoch = pd.DataFrame()
self.tidal_epoch['v_mag'] = (tide.u**2 + tide.v**2)**(0.5)
self.tidal_epoch.index = epoch_index
def generate_tidal_profiles(self, start_datetimes=None, validate=True):
"""Generate tidal profiles from tidal epoch data"""
# Validate input arguments
if validate and start_datetimes is not None:
# List of initialized parameters to validate
args_dict = {'num_trials': self.num_trials,
'start_year': self.start_year,
'end_year': self.end_year,
'start_datetimes': start_datetimes}
# Validate input parameters
validate_all_parameters(args_dict)
# Randomly create start dates
if start_datetimes is None:
start_datetimes = self.tidal_epoch.iloc[:-int(self.length_trials)].sample(
int(self.num_trials)).index.values
date_ranges = [pd.date_range(start=start_date,
periods=self.length_trials,
freq='H', tz=self.timezone)
for start_date in start_datetimes]
# Add an extra year to the annual profile to allow for profiles with year-end overlap
twentyyear_profile = pd.concat([self.tidal_epoch, self.tidal_epoch.head(8760)])
# Loop over each date range and sample profile data
for date_range in date_ranges:
self.tidal_profiles += [twentyyear_profile.loc[date_range]]
# Create directory to hold data
if '{}_{}_{}d_{}t'.format(
self.latitude, self.longitude, int(self.length_trials / 24),
int(self.num_trials)) not in \
os.listdir(os.path.join(TIDAL_DATA_DIR, 'tidal_profiles')):
os.mkdir(os.path.join(
TIDAL_DATA_DIR, 'tidal_profiles', '{}_{}_{}d_{}t'.format(
self.latitude, self.longitude, int(self.length_trials / 24),
int(self.num_trials))))
for i, tidal_profile in enumerate(self.tidal_profiles):
tidal_profile.to_csv(os.path.join(
TIDAL_DATA_DIR, 'tidal_profiles', '{}_{}_{}d_{}t'.format(
self.latitude, self.longitude, int(self.length_trials / 24),
int(self.num_trials)),
'{}_{}_tidal_trial_{}.csv'.format(self.latitude,
self.longitude, i)))
def add_storm_factors(self):
"""Add storm factors to tidal profiles, correlate with solar profiles"""
# TODO: implement
def get_power_profiles(self):
"""
Calculate the output AC power for a 1kW system for each tidal profile.
If read_from_file is True, reads the tidal data from csv,allowing
for faster lookup rather than re-running get_tidal_data and get_tidal_profiles.
"""
# For each tidal profile, calculate production
# Load the tidal data from csv if not already in the self.tidal_profiles list
if not len(self.tidal_profiles):
for i in range(int(self.num_trials)):
try:
tidal = pd.read_csv(os.path.join(
TIDAL_DATA_DIR, 'tidal_profiles', '{}_{}_{}d_{}t'.format(
self.latitude, self.longitude, int(self.length_trials/24),
int(self.num_trials)),
'{}_{}_tidal_trial_{}.csv'.format(self.latitude, self.longitude, i)),
index_col=0, parse_dates=[0])
except FileNotFoundError:
message = 'Tidal profile csvs not found. Please check that you have entered' \
' the longitude, latitude, number, and length of trials for a ' \
'site with previously generated tidal profiles.'
log_error(message)
raise Exception(message)
self.tidal_profiles += [tidal]
# Calculate production for each tidal profile
for tidal in self.tidal_profiles:
self.power_profiles += [calc_tidal_prod(
tidal,
self.timezone,
self.tidal_turbine_rated_power,
self.tidal_rotor_radius,
self.tidal_rotor_number,
self.tidal_inverter_efficiency,
self.maximum_cp,
self.tidal_turbine_losses,
self.tidal_cut_in_velocity,
self.tidal_cut_out_velocity)]
# Calculate power production for initial 1-year profile
self.tidal_current['v_mag'] = self.tidal_current.apply(
lambda x: (x['u']**2 + x['v']**2)**(0.5), axis=1)
self.tmy_tidal = calc_tidal_prod(self.tidal_current,
self.timezone,
self.tidal_turbine_rated_power,
self.tidal_rotor_radius,
self.tidal_rotor_number,
self.tidal_inverter_efficiency,
self.maximum_cp,
self.tidal_turbine_losses,
self.tidal_cut_in_velocity,
self.tidal_cut_out_velocity)
def tidal_checks(self):
""" Several checks to make sure the tidal profiles look OK. """
# Get the profiles with the min and max energy
total_energy = [prof.sum() for prof in self.power_profiles]
max_profile_num = np.where(total_energy == max(total_energy))[0][0]
min_profile_num = np.where(total_energy == min(total_energy))[0][0]
# Plot the profiles with min and max energy
fig = plt.figure()
ax1 = fig.add_subplot(121)
self.power_profiles[max_profile_num].plot(
ax=ax1, title='Profile with max energy generation')
ax1.set_ylabel('Power (kW)')
ax2 = fig.add_subplot(122)
self.power_profiles[min_profile_num].plot(
ax=ax2, title='Profile with min energy generation')
ax2.set_ylabel('Power (kW)')
def calc_tidal_prod(tidal_profile, timezone,
tidal_turbine_rated_power, tidal_rotor_radius, tidal_rotor_number,
tidal_inverter_efficiency, maximum_cp, tidal_turbine_losses,
tidal_cut_in_velocity, tidal_cut_out_velocity, validate=False):
""" Calculates the production from a tidal profile. """
if validate:
# Put arguments in a dict
args_dict = {'tidal_profile': tidal_profile,
'tidal_turbine_rated_power': tidal_turbine_rated_power,
'tidal_rotor_radius': tidal_rotor_radius,
'tidal_rotor_number': tidal_rotor_number,
'tidal_inverter_efficiency': tidal_inverter_efficiency,
'maximum_cp': maximum_cp,
'tidal_turbine_losses': tidal_turbine_losses,
'tidal_cut_in_velocity': tidal_cut_in_velocity,
'tidal_cut_out_velocity': tidal_cut_out_velocity}
# Validate all parameters
validate_all_parameters(args_dict)
# Calculate DC power
dc_power = pd.DataFrame()
for index, row in tidal_profile.iterrows():
u = row['v_mag']
if u >= tidal_cut_in_velocity and u <= tidal_cut_out_velocity:
dc_power.at[
index, 'power'] = np.min([0.5 * maximum_cp * 1.03 * u ** 3 * np.pi
* tidal_rotor_radius ** 2 * tidal_rotor_number,
tidal_turbine_rated_power])
elif u < tidal_cut_in_velocity:
dc_power.at[index, 'power'] = 0
elif u > tidal_cut_out_velocity:
dc_power.at[index, 'power'] = 0
else:
dc_power.at[index, 'power'] = np.nan
# Fix timezone
try:
dc_power.index = dc_power.index.tz_convert(timezone)
except TypeError:
dc_power.index = pd.to_datetime(dc_power.index, utc=True).tz_convert(timezone)
# Normalize DC power generation to turbine size. i.e. per 1kW of tidal
dc_power['power'] = dc_power['power'] / (tidal_turbine_rated_power)
# Calculate turbine losses
dc_power['power'] = dc_power['power'] * (1 - tidal_turbine_losses / 100)
# Calculate AC power
ac_power = dc_power['power'] * tidal_inverter_efficiency
# Force values less than 0 to 0
ac_power[ac_power < 0] = 0
return ac_power
if __name__ == "__main__":
# Used for testing
# Create a TidalProfileGenerator object
marine_data_filename = 'PortAngeles_2015_alldepths.csv'
latitude = 46.34
longitude = -119.28
timezone = 'US/Pacific'
tpg = TidalProfileGenerator(marine_data_filename, latitude, longitude, timezone, tidal_turbine_rated_power = 550,
depth = 10, tidal_rotor_radius = 10, tidal_rotor_number = 2, maximum_cp = 0.42, tidal_cut_in_velocity = 0.5,
tidal_cut_out_velocity = 3, tidal_inverter_efficiency = 0.9, tidal_turbine_losses = 10, num_trials= 5,
length_trials= 14, validate=True)
tpg.get_tidal_data_from_upload()
print('uploaded data')
tpg.extrapolate_tidal_epoch()
print('extrapolated tidal epoch')
tpg.generate_tidal_profiles()
print('generated tidal profiles')
tpg.get_power_profiles()
print('calculated power')
tpg.tidal_checks()