-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcamera.py
111 lines (88 loc) · 3.24 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding:utf-8 -*-
import argparse
import cv2
import numpy as np
import torch
from torch import nn
import torchvision
from src import models
from src.mtcnn.detector import detect_faces
from src.transforms import decode_preds
from src.utils import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(config, args):
model = models.shufflenetModel()
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()])
gpus = list(config["GPUS"])
model = nn.DataParallel(model, device_ids=gpus)
# load model
state_dict = torch.load(args.model_file, map_location=torch.device('cuda'))
if 'state_dict' in state_dict.keys():
state_dict = state_dict['state_dict']
model.load_state_dict(state_dict)
else:
model.module.load_state_dict(state_dict)
model.eval()
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
if not ret:
print("Open Camera Failed !")
break
height, width = img.shape[:2]
bounding_boxes, _ = detect_faces(img)
for box in bounding_boxes:
x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
w = x2 - x1 + 1
h = y2 - y1 + 1
size = int(max([w, h]) * 1.1)
cx = x1 + w // 2
cy = y1 + h // 2
x1 = cx - size // 2
x2 = x1 + size
y1 = cy - size // 2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - width)
edy = max(0, y2 - height)
x2 = min(width, x2)
y2 = min(height, y2)
cropped = img[y1:y2, x1:x2]
if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
cv2.BORDER_CONSTANT, 0)
input = cv2.resize(cropped, (256, 256))
input = transform(input).unsqueeze(0).to(device)
output = model(input)
score_map = output.data.cpu()
center = torch.Tensor([[(x2 - x1) / 2, (y2 - y1) / 2]])
sacle = torch.Tensor([max(w, h) / 200])
preds = decode_preds(score_map, center, sacle, [64, 64])
pre_landmark = preds[0]
pre_landmark = pre_landmark.cpu().detach().numpy().reshape(
-1, 2) - [dx, dy]
for (x, y) in pre_landmark.astype(np.int32):
cv2.circle(img, (x1 + x, y1 + y), 2, (0, 0, 255), -1)
cv2.imshow('landmark detection result', img)
if cv2.waitKey(10) == 27:
break
def parse_args():
parser = argparse.ArgumentParser(description='Train Face Alignment')
parser.add_argument('--cfg',
help='experiment configuration filename',
required=True,
type=str)
parser.add_argument('--model-file',
help='model parameters',
required=True,
type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
config = configparse(args.cfg)
main(config, args)