Skip to content

Latest commit

 

History

History

tiny-vgg

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Train a Tiny VGG

This directory includes code and data to train a Tiny VGG model (inspired by the demo CNN in Stanford CS231n class) on 10 everyday classes from the Tiny ImageNet.

Installation

First, you want to unzip data.zip. The file structure would be something like:

.
├── data
│   ├── class_10_train
│   │   ├── n01882714
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n01882714_boxes.txt
│   │   ├── n02165456
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n02165456_boxes.txt
│   │   ├── n02509815
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n02509815_boxes.txt
│   │   ├── n03662601
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n03662601_boxes.txt
│   │   ├── n04146614
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n04146614_boxes.txt
│   │   ├── n04285008
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n04285008_boxes.txt
│   │   ├── n07720875
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n07720875_boxes.txt
│   │   ├── n07747607
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n07747607_boxes.txt
│   │   ├── n07873807
│   │   │   ├── images [500 entries exceeds filelimit, not opening dir]
│   │   │   └── n07873807_boxes.txt
│   │   └── n07920052
│   │       ├── images [500 entries exceeds filelimit, not opening dir]
│   │       └── n07920052_boxes.txt
│   ├── class_10_val
│   │   ├── test_images [250 entries exceeds filelimit, not opening dir]
│   │   └── val_images [250 entries exceeds filelimit, not opening dir]
│   ├── class_dict_10.json
│   └── val_class_dict_10.json
├── data.zip
├── environment.yaml
└── tiny-vgg.py

To install all dependencies, run the following code

conda env create --file environment.yaml

Training

To train Tiny VGG on these 10 classes, run the following code

python tiny-vgg.py

After training, you will get two saved models in Keras format: trained_tiny_vgg.h5 and trained_vgg_best.h5. The first file is the final model after training, and trained_vgg_best.h5 is the model having the best validation performance. You can use either one for CNN Explainer.

Convert Model Format

Before loading the model using tensorflow.js, you want to convert the model file from Keras h5 format to tensorflow.js format.

tensorflowjs_converter --input_format keras trained_vgg_best.h5 ./

Then you can put the output file group1-shard1of1.bin in /public/data and use tensorflow.js to load the trained model.