forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
144 lines (123 loc) · 4.77 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit tests for ranking model and associated functionality."""
import json
import os
from absl import flags
from absl.testing import parameterized
import tensorflow as tf
from official.recommendation.ranking import common
from official.recommendation.ranking import train
FLAGS = flags.FLAGS
def _get_params_override(vocab_sizes,
interaction='dot',
use_orbit=True,
strategy='mirrored'):
# Update `data_dir` if `synthetic_data=False`.
data_dir = ''
return json.dumps({
'runtime': {
'distribution_strategy': strategy,
},
'task': {
'model': {
'vocab_sizes': vocab_sizes,
'embedding_dim': [8] * len(vocab_sizes),
'bottom_mlp': [64, 32, 8],
'interaction': interaction,
},
'train_data': {
'input_path': os.path.join(data_dir, 'train/*'),
'global_batch_size': 16,
},
'validation_data': {
'input_path': os.path.join(data_dir, 'eval/*'),
'global_batch_size': 16,
},
'use_synthetic_data': True,
},
'trainer': {
'use_orbit': use_orbit,
'validation_interval': 20,
'validation_steps': 20,
'train_steps': 40,
},
})
class TrainTest(parameterized.TestCase, tf.test.TestCase):
def setUp(self):
super().setUp()
self._temp_dir = self.get_temp_dir()
self._model_dir = os.path.join(self._temp_dir, 'model_dir')
tf.io.gfile.makedirs(self._model_dir)
FLAGS.model_dir = self._model_dir
FLAGS.tpu = ''
def tearDown(self):
tf.io.gfile.rmtree(self._model_dir)
super().tearDown()
@parameterized.named_parameters(
('DlrmOneDeviceCTL', 'one_device', 'dot', True),
('DlrmOneDevice', 'one_device', 'dot', False),
('DcnOneDeviceCTL', 'one_device', 'cross', True),
('DcnOneDevice', 'one_device', 'cross', False),
('DlrmTPUCTL', 'tpu', 'dot', True),
('DlrmTPU', 'tpu', 'dot', False),
('DcnTPUCTL', 'tpu', 'cross', True),
('DcnTPU', 'tpu', 'cross', False),
('DlrmMirroredCTL', 'Mirrored', 'dot', True),
('DlrmMirrored', 'Mirrored', 'dot', False),
('DcnMirroredCTL', 'Mirrored', 'cross', True),
('DcnMirrored', 'Mirrored', 'cross', False),
)
def testTrainEval(self, strategy, interaction, use_orbit=True):
# Set up simple trainer with synthetic data.
# By default the mode must be `train_and_eval`.
self.assertEqual(FLAGS.mode, 'train_and_eval')
vocab_sizes = [40, 12, 11, 13]
FLAGS.params_override = _get_params_override(vocab_sizes=vocab_sizes,
interaction=interaction,
use_orbit=use_orbit,
strategy=strategy)
train.main('unused_args')
self.assertNotEmpty(
tf.io.gfile.glob(os.path.join(self._model_dir, 'params.yaml')))
@parameterized.named_parameters(
('DlrmTPUCTL', 'tpu', 'dot', True),
('DlrmTPU', 'tpu', 'dot', False),
('DcnTPUCTL', 'tpu', 'cross', True),
('DcnTPU', 'tpu', 'cross', False),
('DlrmMirroredCTL', 'Mirrored', 'dot', True),
('DlrmMirrored', 'Mirrored', 'dot', False),
('DcnMirroredCTL', 'Mirrored', 'cross', True),
('DcnMirrored', 'Mirrored', 'cross', False),
)
def testTrainThenEval(self, strategy, interaction, use_orbit=True):
# Set up simple trainer with synthetic data.
vocab_sizes = [40, 12, 11, 13]
FLAGS.params_override = _get_params_override(vocab_sizes=vocab_sizes,
interaction=interaction,
use_orbit=use_orbit,
strategy=strategy)
default_mode = FLAGS.mode
# Training.
FLAGS.mode = 'train'
train.main('unused_args')
self.assertNotEmpty(
tf.io.gfile.glob(os.path.join(self._model_dir, 'params.yaml')))
# Evaluation.
FLAGS.mode = 'eval'
train.main('unused_args')
FLAGS.mode = default_mode
if __name__ == '__main__':
common.define_flags()
tf.test.main()