-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_program.R
139 lines (117 loc) · 6.88 KB
/
evaluate_program.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
###########################################################################################################
##################### Program evaluation - individual program ######################
###########################################################################################################
# To evaluate the impact of specific OEND program at a few hypothetical expansion levels
#############################################################################
# 1. SET directory and workspace
#############################################################################
rm(list = ls())
library(openxlsx)
library(dplyr)
library(abind)
source("population_initialization.R")
source("transition_probability.R")
source("microsim.R")
source("decision_tree.R")
source("data_input.R")
source("naloxone_availability.R")
source("cost_effectiveness.R")
args <- commandArgs(trailingOnly = TRUE)
## Model setup parameters ##
seed <- 2021
sw.EMS.ODloc <- "overall" # Please choose from "overall" (using average overall) or "sp" (region-specific) for overdose setting parameter, default is "overall"
# Program data
pg.data <- read.xlsx("Ignore/OEND_program.xlsx", sheet = "Project Weber")
pg.levels <- c(1, 5, 10, 20, 50)
pg.add.array <- array(0, dim = c(length(pg.levels), 2, dim(pg.data)[1]))
# REVIEWED add.array = additional naloxone for high or low risk program
dimnames(pg.add.array)[[2]] <- c("high", "low")
for (i in 1:length(pg.levels)) {
# REVIEWED pg.levels = 1 means double... now is 2, 5, 10, 20, 50; maybe use risk_level instead of risk (risk sounds like a prob)
if (pg.data$Risk[1] == "high") {
pg.add.array[i, "high", ] <- round(pg.data$Volume[1] * pg.data$Proportion * pg.levels[i], 0)
pg.add.array[i, "low", ] <- 0
} else {
pg.add.array[i, "high", ] <- 0
pg.add.array[i, "low", ] <- round(pg.data$Volume[1] * pg.data$Proportion * pg.levels[i], 0)
}
}
# INPUT PARAMETERS
yr_start <- 2016
yr_end <- 2020
d.c <- 0.03
source("io_setup.R")
## Initialize the study population - people who are at risk of opioid overdose
ppl_info <- c("sex", "race", "age", "residence", "curr.state", "OU.state", "init.age", "init.state", "ever.od", "fx")
if (file.exists(paste0("Inputs/init_pop.rds"))) {
init_ppl <- readRDS(paste0("Inputs/init_pop.rds"))
} else if (!file.exists(paste0("Inputs/init_pop.rds"))) {
init_ppl <- ppl.initiation(initials = initials, seed = seed)
saveRDS(init_ppl, paste0("Inputs/init_pop.rds"))
}
# REVIEWED ls = list
simulation_data <- readRDS(file = paste0("calibration/CalibratedData.rds"))
simulation_seed <- readRDS(file = paste0("calibration/CalibratedSeed.rds"))
simulation_seed <- simulation_seed[1:100]
# REVIEWED sq = status quo; pg = program
sq.dh.mx <- sq.nx.mx <- matrix(0, nrow = length(v.region), ncol = length(simulation_seed))
pg.dh.ar <- pg.nx.ar <- array(0, dim = c(dim(pg.add.array)[1], length(v.region), length(simulation_seed)))
nlx.used.mx <- matrix(0, nrow = length(simulation_seed), ncol = 1 + length(pg.levels))
od.death.mx <- matrix(0, nrow = length(simulation_seed), ncol = 1 + length(pg.levels))
scenario.name <- c("Status Quo", "100% increase", "500% increase", "1000% increase", "2000% increase", "5000% increase")
colnames(nlx.used.mx) <- scenario.name
colnames(od.death.mx) <- scenario.name
for (ss in 1:length(simulation_seed)) {
print(paste0("Parameter set: ", ss))
params.temp <- simulation_data[[ss]]
params.temp$NxDataPharm$pe <- 0
params.temp$mortality_nx <- params.temp$mor_bl * (1 - 0.9)
sim_sq <- MicroSim(init_ppl, params = params.temp, timesteps, agent_states, d.c, PT.out = FALSE, strategy = "SQ", seed = simulation_seed[ss]) # run for status quo
sq.dh.mx[, ss] <- colSums(sim_sq$m.oddeath[(timesteps - 11):timesteps, ])
sq.nx.mx[, ss] <- colSums(sim_sq$n.nlx.OEND.str)
nlx.used.mx[ss, "Status Quo"] <- sum(sim_sq$v.nlxused[(timesteps - 11):timesteps])
od.death.mx[ss, "Status Quo"] <- sum(sim_sq$m.oddeath[(timesteps - 11):timesteps, ])
for (ll in 1:dim(pg.add.array)[1]) {
params.temp$pg.add <- pg.add.array[ll, , ]
sim_pg <- MicroSim(init_ppl, params = params.temp, timesteps, agent_states, d.c, PT.out = FALSE, strategy = "program", seed = simulation_seed[ss]) # run for program scenario
pg.dh.ar[ll, , ss] <- colSums(sim_pg$m.oddeath[(timesteps - 11):timesteps, ])
pg.nx.ar[ll, , ss] <- colSums(sim_pg$n.nlx.OEND.str)
nlx.used.mx[ss, scenario.name[ll + 1]] <- sum(sim_pg$v.nlxused[(timesteps - 11):timesteps])
od.death.mx[ss, scenario.name[ll + 1]] <- sum(sim_pg$m.oddeath[(timesteps - 11):timesteps, ])
}
}
pop.rgn <- colSums(Demographic[, -c(1:3)]) # population in each region (for calculation of rate)
NoDeaths <- data.frame(matrix(nrow = n.rgn * (1 + dim(pg.add.array)[1]), ncol = 5))
x <- c("location", "scenario", "mean", "upper", "lower")
colnames(NoDeaths) <- x
NoDeaths$location <- rep(v.rgn, 1 + dim(pg.add.array)[1])
NoDeaths$scenario <- rep(scenario.name, each = length(v.rgn))
RateNlx <- NoNlx <- RateDeaths <- NoDeaths
# Number of deaths
NoDeaths$mean[NoDeaths$scenario == "Status Quo"] <- apply(sq.dh.mx, 1, mean)
NoDeaths$upper[NoDeaths$scenario == "Status Quo"] <- apply(sq.dh.mx, 1, quantile, probs = 0.975)
NoDeaths$lower[NoDeaths$scenario == "Status Quo"] <- apply(sq.dh.mx, 1, quantile, probs = 0.025)
for (sc in 2:length(scenario.name)) {
NoDeaths$mean[NoDeaths$scenario == scenario.name[sc]] <- apply(pg.dh.ar[sc - 1, , ], 1, mean)
NoDeaths$upper[NoDeaths$scenario == scenario.name[sc]] <- apply(pg.dh.ar[sc - 1, , ], 1, quantile, probs = 0.975)
NoDeaths$lower[NoDeaths$scenario == scenario.name[sc]] <- apply(pg.dh.ar[sc - 1, , ], 1, quantile, probs = 0.025)
}
# Rate of deaths
RateDeaths[, c("mean", "upper", "lower")] <- NoDeaths[, c("mean", "upper", "lower")] / pop.rgn * 100000
# Number of Naloxone kits
NoNlx$mean[NoNlx$scenario == "Status Quo"] <- apply(sq.nx.mx, 1, mean)
NoNlx$upper[NoNlx$scenario == "Status Quo"] <- apply(sq.nx.mx, 1, quantile, probs = 0.975)
NoNlx$lower[NoNlx$scenario == "Status Quo"] <- apply(sq.nx.mx, 1, quantile, probs = 0.025)
for (sc in 2:length(scenario.name)) {
NoNlx$mean[NoNlx$scenario == scenario.name[sc]] <- apply(pg.nx.ar[sc - 1, , ], 1, mean)
NoNlx$upper[NoNlx$scenario == scenario.name[sc]] <- apply(pg.nx.ar[sc - 1, , ], 1, quantile, probs = 0.975)
NoNlx$lower[NoNlx$scenario == scenario.name[sc]] <- apply(pg.nx.ar[sc - 1, , ], 1, quantile, probs = 0.025)
}
# Rate of Naloxone kits
RateNlx[, c("mean", "upper", "lower")] <- NoNlx[, c("mean", "upper", "lower")] / pop.rgn * 100000
write.csv(NoDeaths, file = ("Outputs/Program/Number.Deaths.csv"), row.names = F)
write.csv(RateDeaths, file = ("Outputs/Program//Rate.Deaths.csv"), row.names = F)
write.csv(NoNlx, file = ("Outputs/Program//Number.Naloxone.csv"), row.names = F)
write.csv(RateNlx, file = ("Outputs/Program//Rate.Naloxone.csv"), row.names = F)
write.csv(nlx.used.mx, file = ("Outputs/Program//NaloxoneUsed.csv"), row.names = F)
write.csv(od.death.mx, file = ("Outputs/Program//TotalODdeaths.csv"), row.names = F)