-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAmendedDCGAN.py
211 lines (109 loc) · 5.81 KB
/
AmendedDCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# A Deep Convolutional GAN(DCGAN) based on the implementation at https://github.com/pytorch/examples/blob/master/dcgan/main.py#L240. The network topology and hyperparameters differ from those prescribed in the original paper.
import os
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import numpy as np
manualSeed = random.randint(1,10000)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
dataroot = "dataFolder/CelebADataset"
workers = 4 # Number of parallel data loading processes
batch_size = 128
image_size = 64
image_channels = 3
latent_vector_dim = 100
generator_feature_maps = 64
discriminator_feature_maps = 64
dataset = dset.ImageFolder(root = dataroot, transform = transforms.Compose([transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]))
dataloader = torch.utils.DataLoader(dataset, batch_size = batch_size, shuffle = True, num_workers = workers)
device = torch.device("cpu")
def initialize_weights(model):
class_name = model.__class__.__name__
if class_name.find('Conv')!=-1:
nn.init.normal_(model.weight.data, 0.0, 0.02)
elif class_name.find('BatchNorm') != -1:
nn.init.normal_(model.weight.data, 0.0, 0.02)
nn.init.constant_(model.bias.data, 0)
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.container = nn.Sequential(nn.ConvTranspose2d(latent_vector_dim, generator_feature_maps*8, 4,1,0, bias = False),
nn.BatchNorm2d(generator_feature_maps*8),
nn.ReLU(True),
nn.ConvTranspose2d(generator_feature_maps*8, generator_feature_maps*4, 4, 2, 1, bias = False), # Transposed convolutional layers perform spatial upsampling
nn.BatchNorm2d(generator_feature_maps*4),
nn.ReLU(True),
nn.ConvTranspose2d(generator_feature_maps*4, generator_feature_maps*2, 4,2,1, bias = False),
nn.BatchNorm2d(generator_feature_maps*2),
nn.ReLU(True),
nn.ConvTranspose2d(generator_feature_maps*2, generator_feature_maps, 4,2,1, bias = False),
nn.BatchNorm2d(generator_feature_maps),
nn.ReLU(True),
nn.ConvTranspose2d(generator_feature_maps, image_channels)
nn.Tanh()) # Deconvolution kernel dimensions, weight initialization schemes may differ from the values specified in the original paper
def forward(self, input):
return self.container(input)
generator = Generator().to(device) # Move generator to CPU
generator.apply(initialize_weights) # Initialize the generator's weights
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.container = nn.Sequential(nn.Conv2d(image_channels, discriminator_feature_maps, 4,2,1, bias = False),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(discriminator_feature_maps, discriminator_feature_maps*2, 4,2,1, bias = False),
nn.BatchNorm2d(discriminator_feature_maps*2),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(discriminator_feature_maps*2, discriminator_feature_maps*4, 4,2,1, bias = False), # Spatial downsampling
nn.BatchNorm2d(discriminator_feature_maps*4),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(discriminator_feature_maps*4, discriminator_feature_maps*8, 4,2,1, bias = False)
nn.BatchNorm2d(discriminator_feature_maps*8),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(discriminator_feature_maps*8, 1,4,1,0, bias = False),
nn.Sigmoid())
def forward(self, input):
return self.container(input) # Not optimized for CUDA tensors
discriminator = Discriminator().to(device)
discriminator.apply(initialize_weights) # Initialize weights to mean 0 and variance 0.04
criterion = nn.BCELoss() # l(n) = -[yn.log(xn) + (1-yn).log(1-xn)]
latent_noise = torch.randn(64, latent_vector_dim, 1,1, device = device)
training_label = 1 # Labels originating from the training set, i.e. real
generated_label = 0 # Fake labels
discriminator_optimizer = optim.SGD(discriminator.parameters(), lr = 0.1) # Try SGD in the discriminator (even though this flies in the face of the paper's suggestions)
generator_optimizer = optim.Adam(generator.parameters(), lr = 0.0002, betas = (0.5, 0.999)) # Adam in the generator
# Training loop
epochs = 20
generator_losses = []
discriminator_losses = []
for epoch in range(epochs):
for index, data_batch in enumerate(dataloader, 0):
discriminator.zero_grad()
cpu_batch = data_batch[0].to(device)
data_batch_size = cpu_batch.size(0)
discriminator_labels = torch.full((data_batch_size,), training_label, device = device)
discriminator_output = discriminator(cpu_batch).view(-1)
real_batch_error = criterion(discriminator_output, discriminator_labels)
real_batch_error.backward()
latent_vector = torch.randn(data_batch_size, latent_vector_dim, 1,1, device = device) # Sample a vector from a normal distribution
generator_fake_batch_outputs = generator(latent_vector)
label.fill_(generated_label)
discriminator_fake_predictions = discriminator(generator_fake_batch_outputs.detach()).view(-1) # Detach from the computational graph to avoid computing gradients w.r.t. the generator's parameters
discriminator_error = criterion(discriminator_fake_predictions, label)
discriminator_error.backward() # Accumulate gradients
fake_prediction_mean = discriminator_fake_predictions.mean().item()
aggregated_discriminator_error = real_batch_error + discriminator_error
discriminator_optimizer.step()
# Perform generator updates
generator.zero_grad()
label.fill_(training_label)
discriminator_outputs = discriminator(generator_fake_batch_outputs).view(-1)
generator_error = criterion(discriminator_outputs, label)
generator_error.backward()
generator_optimizer.step()
generator_losses.append(generator_error.item())
discriminator_losses.append(discriminator_error.item())