forked from opendatahub-io/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile.ubi
217 lines (166 loc) · 7.94 KB
/
Dockerfile.ubi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
## Global Args #################################################################
ARG BASE_UBI_IMAGE_TAG=9.4
ARG PYTHON_VERSION=3.12
ARG TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
## Base Layer ##################################################################
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} as base
ARG PYTHON_VERSION
ENV PYTHON_VERSION=${PYTHON_VERSION}
RUN microdnf -y update && microdnf install -y \
python${PYTHON_VERSION}-pip python${PYTHON_VERSION}-wheel \
&& microdnf clean all
WORKDIR /workspace
ENV LANG=C.UTF-8 \
LC_ALL=C.UTF-8
# Some utils for dev purposes - tar required for kubectl cp
RUN microdnf install -y \
which procps findutils tar vim git\
&& microdnf clean all
## Python Installer ############################################################
FROM base as python-install
ARG PYTHON_VERSION
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV PYTHON_VERSION=${PYTHON_VERSION}
RUN microdnf install -y \
python${PYTHON_VERSION}-devel && \
python${PYTHON_VERSION} -m venv $VIRTUAL_ENV && pip install --no-cache -U pip wheel uv && microdnf clean all
## CUDA Base ###################################################################
FROM python-install as cuda-base
RUN curl -Lo /etc/yum.repos.d/cuda-rhel9.repo \
https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo
RUN microdnf install -y \
cuda-nvcc-12-4 cuda-nvtx-12-4 cuda-libraries-devel-12-4 && \
microdnf clean all
ENV CUDA_HOME="/usr/local/cuda" \
PATH="${CUDA_HOME}/bin:${PATH}" \
LD_LIBRARY_PATH="${CUDA_HOME}/lib64:${CUDA_HOME}/extras/CUPTI/lib64:${LD_LIBRARY_PATH}"
## Python cuda base #################################################################
FROM cuda-base AS python-cuda-base
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# install cuda and common dependencies
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,source=requirements-cuda.txt,target=requirements-cuda.txt \
uv pip install \
-r requirements-cuda.txt
## Development #################################################################
FROM python-cuda-base AS dev
# install build and runtime dependencies
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,source=requirements-cuda.txt,target=requirements-cuda.txt \
--mount=type=bind,source=requirements-dev.txt,target=requirements-dev.txt \
--mount=type=bind,source=requirements-lint.txt,target=requirements-lint.txt \
--mount=type=bind,source=requirements-test.txt,target=requirements-test.txt \
uv pip install \
-r requirements-cuda.txt \
-r requirements-dev.txt
## Builder #####################################################################
FROM dev AS build
# install build dependencies
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=requirements-build.txt,target=requirements-build.txt \
uv pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
# git is required for the cutlass kernels
RUN rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && rpm -ql epel-release && microdnf install -y git ccache && microdnf clean all
COPY . .
ARG TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=$TORCH_CUDA_ARCH_LIST
ARG vllm_fa_cmake_gpu_arches
ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure the cuda environment is in the PATH
ENV PATH=/usr/local/cuda/bin:$PATH
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,src=.git,target=/workspace/.git \
env CFLAGS="-march=haswell" \
CXXFLAGS="$CFLAGS $CXXFLAGS" \
CMAKE_BUILD_TYPE=Release \
python3 setup.py bdist_wheel --dist-dir=dist
#################### libsodium Build IMAGE ####################
FROM base as libsodium-builder
RUN microdnf install -y gcc gzip \
&& microdnf clean all
WORKDIR /usr/src/libsodium
ARG LIBSODIUM_VERSION=1.0.20
RUN curl -LO https://github.com/jedisct1/libsodium/releases/download/${LIBSODIUM_VERSION}-RELEASE/libsodium-${LIBSODIUM_VERSION}.tar.gz \
&& tar -xzvf libsodium*.tar.gz \
&& rm -f libsodium*.tar.gz \
&& mv libsodium*/* ./
RUN CFLAGS="-O3 -Wall -Werror=format-security -Wno-unused-function -Wp,-D_GLIBCXX_ASSERTIONS -fstack-protector-strong -fstack-clash-protection -fcf-protection"\
./configure --prefix="/usr/" && make -j $MAX_JOBS && make check
## Release #####################################################################
FROM python-install AS vllm-openai
ARG PYTHON_VERSION
WORKDIR /workspace
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH=$VIRTUAL_ENV/bin/:$PATH
# force using the python venv's cuda runtime libraries
ENV LD_LIBRARY_PATH="${VIRTUAL_ENV}/lib/python${PYTHON_VERSION}/site-packages/nvidia/cuda_nvrtc/lib:${LD_LIBRARY_PATH}"
ENV LD_LIBRARY_PATH="${VIRTUAL_ENV}/lib/python${PYTHON_VERSION}/site-packages/nvidia/cuda_runtime/lib:${LD_LIBRARY_PATH}"
ENV LD_LIBRARY_PATH="${VIRTUAL_ENV}/lib/python${PYTHON_VERSION}/site-packages/nvidia/nvtx/lib:${LD_LIBRARY_PATH}"
# Triton needs a CC compiler
RUN microdnf install -y gcc \
&& microdnf clean all
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
uv pip install $(echo dist/*.whl)'[tensorizer]' --verbose
# Install libsodium for Tensorizer encryption
RUN --mount=type=bind,from=libsodium-builder,src=/usr/src/libsodium,target=/usr/src/libsodium \
cd /usr/src/libsodium \
&& make install
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
uv pip install \
"https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu124torch2.4-cp312-cp312-linux_x86_64.whl"
ENV HF_HUB_OFFLINE=1 \
HOME=/home/vllm \
# Allow requested max length to exceed what is extracted from the
# config.json
# see: https://github.com/vllm-project/vllm/pull/7080
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 \
VLLM_USAGE_SOURCE=production-docker-image \
VLLM_WORKER_MULTIPROC_METHOD=fork \
VLLM_NO_USAGE_STATS=1
# setup non-root user for OpenShift
RUN umask 002 \
&& useradd --uid 2000 --gid 0 vllm \
&& chmod g+rwx $HOME /usr/src /workspace
COPY LICENSE /licenses/vllm.md
# Copy only .jinja files from example directory to template directory
COPY examples/*.jinja /app/data/template/
USER 2000
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
FROM vllm-openai as vllm-grpc-adapter
USER root
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,from=build,src=/workspace/dist,target=/workspace/dist \
uv pip install $(echo dist/*.whl)'[tensorizer]' vllm-tgis-adapter==0.5.3
ENV GRPC_PORT=8033 \
PORT=8000 \
# As an optimization, vLLM disables logprobs when using spec decoding by
# default, but this would be unexpected to users of a hosted model that
# happens to have spec decoding
# see: https://github.com/vllm-project/vllm/pull/6485
DISABLE_LOGPROBS_DURING_SPEC_DECODING=false
USER 2000
ENTRYPOINT ["python3", "-m", "vllm_tgis_adapter", "--uvicorn-log-level=warning"]