-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstart_face_recon_app.py
153 lines (136 loc) · 5.27 KB
/
start_face_recon_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
import os
import numpy as np
from face_recognition_system.videocamera import VideoCamera
from face_recognition_system.detectors import FaceDetector
import cv2
import shutil
from cv2 import __version__
def resize(images, size=(100, 100)):
images_norm = []
for image in images:
is_color = len(image.shape) == 3
if is_color:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if image.shape < size:
image_norm = cv2.resize(image, size, interpolation=cv2.INTER_AREA)
else:
image_norm = cv2.resize(image, size, interpolation=cv2.INTER_CUBIC)
images_norm.append(image_norm)
return images_norm
def cut_face_rectangle(image, face_coord):
images_rectangle = []
for (x, y, w, h) in face_coord:
images_rectangle.append(image[y: y + h, x: x + w])
return images_rectangle
def draw_face_rectangle(image, faces_coord):
for (x, y, w, h) in faces_coord:
cv2.rectangle(image, (x, y), (x + w, y + h), (206, 0, 209), 2)
return image
def get_images(frame, faces_coord, shape):
faces_img = cut_face_rectangle(frame, faces_coord)
frame = draw_face_rectangle(frame, faces_coord)
#faces_img = normalize_intensity(faces_img)
faces_img = resize(faces_img)
return (frame, faces_img)
def add_person(people_folder, shape):
person_name = input('Name of the new person: ').lower()
folder = people_folder + person_name
if os.path.exists(folder):
shutil.rmtree(folder)
input("Press ENTER to start taking pictures")
os.mkdir(folder)
video = VideoCamera()
detector = FaceDetector('face_recognition_system/haarcascade_frontalface_alt2.xml')
counter = 1
timer = 0
while counter < 51:
frame = video.get_frame()
face_coord = detector.detect(frame)
if len(face_coord):
frame, face_img = get_images(frame, face_coord, shape)
if timer % 10 == 5:
cv2.imwrite(folder + '/' + str(counter) + '.jpg',
face_img[0])
counter += 1
cv2.imshow('Video Feed', frame)
cv2.waitKey(50)
timer += 5
cv2.destroyAllWindows()
def recognize_people(people_folder, shape):
people = [person for person in os.listdir(people_folder)]
print (30 * '-')
detector = FaceDetector('face_recognition_system/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
threshold = 105
images = []
labels = []
labels_people = {}
for i, person in enumerate(people):
labels_people[i] = person
for image in os.listdir(people_folder + person):
images.append(cv2.imread(people_folder + person + '/' + image, 0))
labels.append(i)
try:
recognizer.train(images, np.array(labels))
except:
print ("\nOpenCV Error: Do you have at least two people in the database?\n")
sys.exit()
video = VideoCamera()
while True:
frame = video.get_frame()
faces_coord = detector.detect(frame, False)
if len(faces_coord):
frame, faces_img = get_images(frame, faces_coord, shape)
for i, face_img in enumerate(faces_img):
if __version__ == "3.1.0":
collector = cv2.face.MinDistancePredictCollector()
recognizer.predict(face_img, collector)
conf = collector.getDist()
pred = collector.getLabel()
else:
pred, conf = recognizer.predict(face_img)
if conf < threshold:
cv2.putText(frame, labels_people[pred].capitalize(),
(faces_coord[i][0], faces_coord[i][1] - 2),
cv2.FONT_HERSHEY_PLAIN, 1.7, (206, 0, 209), 2,
cv2.LINE_AA)
else:
cv2.putText(frame, "Unknown",
(faces_coord[i][0], faces_coord[i][1]),
cv2.FONT_HERSHEY_PLAIN, 1.7, (206, 0, 209), 2,
cv2.LINE_AA)
cv2.putText(frame, "ESC to exit", (5, frame.shape[0] - 5),
cv2.FONT_HERSHEY_PLAIN, 1.2, (206, 0, 209), 2, cv2.LINE_AA)
cv2.imshow('Video', frame)
if cv2.waitKey(100) & 0xFF == 27:
cv2.destroyAllWindows()
sys.exit()
def check_choice():
is_valid = 0
while not is_valid:
try:
choice = int(input('Enter your choice [1-3] : '))
if choice in [1, 2, 3]:
is_valid = 1
else:
print ("'%d' is not an option.\n" % choice)
except ValueError as error:
print ("%s is not an option.\n" % str(error).split(": ")[1])
return choice
if __name__ == '__main__':
print ("1. Add person to the recognizer system")
print ("2. Start recognizer")
print ("3. Exit")
print (30 * '-')
CHOICE = check_choice()
PEOPLE_FOLDER = "face_recognition_system/people/"
SHAPE = "rectangle"
if CHOICE == 1:
if not os.path.exists(PEOPLE_FOLDER):
os.makedirs(PEOPLE_FOLDER)
add_person(PEOPLE_FOLDER, SHAPE)
elif CHOICE == 2:
recognize_people(PEOPLE_FOLDER, SHAPE)
elif CHOICE == 3:
sys.exit()