forked from mlcommons/algorithmic-efficiency
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmission_runner.py
714 lines (649 loc) · 28 KB
/
submission_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
r"""Run a submission on a single workload.
Example command:
# pylint: disable=line-too-long
python3 submission_runner.py \
--workload=mnist \
--framework=jax \
--submission_path=reference_algorithms/development_algorithms/mnist/mnist_jax/submission.py \
--tuning_ruleset=external \
--tuning_search_space=reference_algorithms/development_algorithms/mnist/tuning_search_space.json \
--num_tuning_trials=3 \
--experiment_dir=/home/znado/experiment_dir \
--experiment_name=baseline
"""
import datetime
import gc
import importlib
import itertools
import json
import os
import struct
import time
from typing import Any, Dict, Optional, Tuple
from absl import app
from absl import flags
from absl import logging
import jax
import torch
import torch.distributed as dist
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # Disables tensorRT, cuda warnings.
import tensorflow as tf
# Hide any GPUs form TensorFlow. Otherwise TF might reserve memory and make
# it unavailable to JAX.
tf.config.set_visible_devices([], 'GPU')
from algorithmic_efficiency import checkpoint_utils
from algorithmic_efficiency import halton
from algorithmic_efficiency import logger_utils
from algorithmic_efficiency import random_utils as prng
from algorithmic_efficiency import spec
from algorithmic_efficiency.profiler import PassThroughProfiler
from algorithmic_efficiency.profiler import Profiler
from algorithmic_efficiency.pytorch_utils import pytorch_init
from algorithmic_efficiency.pytorch_utils import pytorch_setup
from algorithmic_efficiency.pytorch_utils import sync_ddp_time
from algorithmic_efficiency.workloads import workloads
# disable only for deepspeech if it works fine for other workloads.
os.environ['XLA_FLAGS'] = '--xla_gpu_enable_triton_gemm=false'
# TODO(znado): make a nicer registry of workloads that lookup in.
BASE_WORKLOADS_DIR = workloads.BASE_WORKLOADS_DIR
# Workload_path will be appended by '_pytorch' or '_jax' automatically.
WORKLOADS = workloads.WORKLOADS
flags.DEFINE_string(
'submission_path',
None,
'The relative path of the Python file containing submission functions. '
'NOTE: the submission dir must have an __init__.py file!')
flags.DEFINE_string(
'workload',
None,
help=f'The name of the workload to run.\n Choices: {list(WORKLOADS.keys())}'
)
flags.DEFINE_enum(
'tuning_ruleset',
'external',
enum_values=['external', 'self'],
help='Which tuning ruleset to use.')
flags.DEFINE_string(
'tuning_search_space',
None,
'The path to the JSON file describing the external tuning search space.')
flags.DEFINE_integer('num_tuning_trials',
1,
'The number of external hyperparameter trials to run.')
flags.DEFINE_string('data_dir', '~/data', 'Dataset location.')
flags.DEFINE_string('imagenet_v2_data_dir',
None,
'Dataset location for ImageNet-v2.')
flags.DEFINE_string('librispeech_tokenizer_vocab_path',
'',
'Location to librispeech tokenizer.')
flags.DEFINE_enum(
'framework',
None,
enum_values=['jax', 'pytorch'],
help='Whether to use Jax or Pytorch for the submission. Controls among '
'other things if the Jax or Numpy RNG library is used for RNG.')
flags.DEFINE_boolean(
'torch_compile',
True,
'Whether to use `torch.compile` to JIT-compile PyTorch code. '
'This will only take effect when `framework`==pytorch.')
flags.DEFINE_string(
'experiment_dir',
None,
'The root directory to store all experiments. '
'It is required and the directory should have '
'an absolute path rather than a relative path.')
flags.DEFINE_string('experiment_name', None, 'Name of the experiment.')
flags.DEFINE_boolean(
'save_checkpoints',
True,
'Whether or not to save checkpoints of the model and optimizer '
'at every eval and after training.')
flags.DEFINE_boolean(
'save_intermediate_checkpoints',
True,
'Whether to save any intermediate checkpoints. '
'If False, it will only keep the latest checkpoint.')
flags.DEFINE_boolean('resume_last_run',
None,
'Whether to resume the experiment from its last run.')
flags.DEFINE_boolean(
'append_timestamp',
False,
'If True, the current datetime will be appended to the experiment name. '
'Useful for guaranteeing a unique experiment dir for new runs.')
flags.DEFINE_boolean('use_wandb',
False,
'Whether to use Weights & Biases logging.')
flags.DEFINE_boolean('profile', False, 'Whether to produce profiling output.')
flags.DEFINE_integer('max_global_steps',
None,
'Maximum number of update steps.')
flags.DEFINE_boolean(
'overwrite',
False,
'Whether to overwrite the experiment with identical experiment_dir and'
'experiment_name.')
flags.DEFINE_integer(
'hparam_start_index',
None,
'Start index to slice set of hyperparameters in tuning search space.')
flags.DEFINE_integer(
'hparam_end_index',
None,
'End index to slice set of hyperparameters in tuning search space.')
flags.DEFINE_integer(
'rng_seed',
None,
'Value of rng seed. If None, a random seed will'
'be generated from hardware.')
flags.DEFINE_boolean('set_pytorch_max_split_size',
False,
'If true, set pytorch max_split_size_mb to 256')
flags.DEFINE_integer(
'pytorch_eval_num_workers',
0,
'Number of workers for ImageNet PyTorch evaluation data loaders.'
'WARNING: Setting pytorch_eval_num_workers != 0, will result '
'in incorrect evals currently, see issues/732.')
FLAGS = flags.FLAGS
USE_PYTORCH_DDP, RANK, DEVICE, N_GPUS = pytorch_setup()
def _get_time():
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def _get_time_ddp():
torch.cuda.synchronize()
t = time.time()
return sync_ddp_time(t, DEVICE)
if USE_PYTORCH_DDP:
get_time = _get_time_ddp
else:
get_time = _get_time
def _reset_cuda_mem():
if FLAGS.framework == 'pytorch' and torch.cuda.is_available():
torch._C._cuda_clearCublasWorkspaces()
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_once(
workload: spec.Workload,
workload_name: str,
global_batch_size: int,
global_eval_batch_size: int,
data_dir: str,
imagenet_v2_data_dir: str,
init_optimizer_state: spec.InitOptimizerFn,
update_params: spec.UpdateParamsFn,
data_selection: spec.DataSelectionFn,
hyperparameters: Optional[spec.Hyperparameters],
rng_seed: int,
rng: spec.RandomState,
profiler: Profiler,
max_global_steps: int = None,
log_dir: Optional[str] = None,
save_checkpoints: Optional[bool] = True
) -> Tuple[spec.Timing, Dict[str, Any]]:
_reset_cuda_mem()
data_rng, opt_init_rng, model_init_rng, rng = prng.split(rng, 4)
# Workload setup.
logging.info('Initializing dataset.')
if hasattr(workload, '_eval_num_workers'):
# Set the number of workers for PyTorch evaluation data loaders
# (not all workloads have them).
workload.eval_num_workers = FLAGS.pytorch_eval_num_workers
with profiler.profile('Initializing dataset'):
input_queue = workload._build_input_queue(
data_rng,
'train',
data_dir=data_dir,
global_batch_size=global_batch_size)
logging.info('Initializing model.')
with profiler.profile('Initializing model'):
dropout_rate = None
aux_dropout_rate = None
if hasattr(hyperparameters, 'dropout_rate'):
dropout_rate = hyperparameters.dropout_rate
if hasattr(hyperparameters, 'aux_dropout_rate'):
aux_dropout_rate = hyperparameters.aux_dropout_rate
model_params, model_state = workload.init_model_fn(
model_init_rng, dropout_rate, aux_dropout_rate)
if FLAGS.framework == 'pytorch' and FLAGS.torch_compile:
compile_error_workloads = [
'librispeech_conformer',
'ogbg',
'criteo1tb',
'imagenet_vit',
]
eager_backend_workloads = ['librispeech_deepspeech']
aot_eager_backend_workloads = []
loss_compilation_workloads = [
'fastmri', 'librispeech_deepspeech', 'ogbg', 'wmt'
]
base_workload = workloads.get_base_workload_name(workload_name)
if base_workload in compile_error_workloads:
logging.warning(
'These workloads cannot be fully compiled under current '
'PyTorch version. Proceeding without `torch.compile`.')
elif base_workload in eager_backend_workloads:
logging.warning(
'These workloads cannot be fully compiled under current '
'PyTorch version. Proceeding with `backend=eager`.')
model_params = torch.compile(model_params, backend='eager')
elif base_workload in aot_eager_backend_workloads:
logging.warning(
'These workloads cannot be fully compiled under current '
'PyTorch version. Proceeding with `backend=aot_eager`.')
model_params = torch.compile(model_params, backend='aot_eager')
else:
logging.info('Performing `torch.compile`.')
model_params = torch.compile(model_params)
if base_workload in loss_compilation_workloads:
workload.loss_fn = torch.compile(workload.loss_fn)
logging.info('Initializing optimizer.')
with profiler.profile('Initializing optimizer'):
optimizer_state = init_optimizer_state(workload,
model_params,
model_state,
hyperparameters,
opt_init_rng)
logging.info('Initializing metrics bundle.')
# Bookkeeping.
train_state = {
'validation_goal_reached': False,
'test_goal_reached': False,
'is_time_remaining': True,
'last_eval_time': 0,
'training_complete': False,
'accumulated_submission_time': 0,
'accumulated_eval_time': 0,
'accumulated_logging_time': 0,
'last_step_end_time': None,
}
global_step = 0
eval_results = []
preemption_count = 0
# Loggers and checkpoint setup.
logging.info('Initializing checkpoint and logger.')
if log_dir is not None:
# If the checkpoint exists, load from the checkpoint.
(optimizer_state,
model_params,
model_state,
train_state,
eval_results,
global_step,
preemption_count) = checkpoint_utils.maybe_restore_checkpoint(
FLAGS.framework,
optimizer_state,
model_params,
model_state,
train_state,
eval_results,
global_step,
preemption_count,
checkpoint_dir=log_dir)
meta_file_name = os.path.join(log_dir, f'meta_data_{preemption_count}.json')
logging.info(f'Saving meta data to {meta_file_name}.')
meta_data = logger_utils.get_meta_data(workload, rng_seed)
logger_utils.write_json(meta_file_name, meta_data)
flag_file_name = os.path.join(log_dir, f'flags_{preemption_count}.json')
logging.info(f'Saving flags to {flag_file_name}.')
logger_utils.write_json(flag_file_name, flags.FLAGS.flag_values_dict())
metrics_logger = None
if RANK == 0:
metrics_logger = logger_utils.set_up_loggers(log_dir,
flags.FLAGS,
hyperparameters)
workload.attach_metrics_logger(metrics_logger)
global_start_time = get_time()
train_state['last_step_end_time'] = global_start_time
logging.info('Starting training loop.')
goals_reached = (
train_state['validation_goal_reached'] and
train_state['test_goal_reached'])
while train_state['is_time_remaining'] and \
not goals_reached and \
not train_state['training_complete']:
step_rng = prng.fold_in(rng, global_step)
data_select_rng, update_rng, eval_rng = prng.split(step_rng, 3)
with profiler.profile('Data selection'):
batch = data_selection(workload,
input_queue,
optimizer_state,
model_params,
model_state,
hyperparameters,
global_step,
data_select_rng)
try:
with profiler.profile('Update parameters'):
optimizer_state, model_params, model_state = update_params(
workload=workload,
current_param_container=model_params,
current_params_types=workload.model_params_types,
model_state=model_state,
hyperparameters=hyperparameters,
batch=batch,
loss_type=workload.loss_type,
optimizer_state=optimizer_state,
eval_results=eval_results,
global_step=global_step,
rng=update_rng)
except spec.TrainingCompleteError:
train_state['training_complete'] = True
global_step += 1
if (max_global_steps is not None) and (global_step == max_global_steps):
train_state['training_complete'] = True
train_step_end_time = get_time()
train_state['accumulated_submission_time'] += (
train_step_end_time - train_state['last_step_end_time'])
# Use 3x the runtime budget for the self-tuning ruleset.
max_allowed_runtime_sec = (
workload.max_allowed_runtime_sec if FLAGS.tuning_ruleset == 'external'
else 3 * workload.max_allowed_runtime_sec)
train_state['is_time_remaining'] = (
train_state['accumulated_submission_time'] < max_allowed_runtime_sec)
# Check if submission is eligible for an untimed eval.
if ((train_step_end_time - train_state['last_eval_time']) >=
workload.eval_period_time_sec or train_state['training_complete']):
with profiler.profile('Evaluation'):
del batch
_reset_cuda_mem()
try:
eval_start_time = get_time()
latest_eval_result = workload.eval_model(global_eval_batch_size,
model_params,
model_state,
eval_rng,
data_dir,
imagenet_v2_data_dir,
global_step)
# Check if targets reached.
# Note that this is one of the stopping conditions for the length of
# a training run. To score the run we only consider the time
# to validation target retrospectively.
train_state['validation_goal_reached'] = (
workload.has_reached_validation_target(latest_eval_result) or
train_state['validation_goal_reached'])
train_state['test_goal_reached'] = (
workload.has_reached_test_target(latest_eval_result) or
train_state['test_goal_reached'])
goals_reached = (
train_state['validation_goal_reached'] and
train_state['test_goal_reached'])
# Save last eval time.
eval_end_time = get_time()
train_state['last_eval_time'] = eval_end_time
# Accumulate eval time.
train_state[
'accumulated_eval_time'] += eval_end_time - eval_start_time
# Add times to eval results for logging.
latest_eval_result['score'] = (
train_state['accumulated_submission_time'])
latest_eval_result[
'total_duration'] = eval_end_time - global_start_time
latest_eval_result['accumulated_submission_time'] = train_state[
'accumulated_submission_time']
latest_eval_result['accumulated_eval_time'] = train_state[
'accumulated_eval_time']
latest_eval_result['accumulated_logging_time'] = train_state[
'accumulated_logging_time']
time_since_start = latest_eval_result['total_duration']
logging.info(f'Time since start: {time_since_start:.2f}s, '
f'\tStep: {global_step}, \t{latest_eval_result}')
eval_results.append((global_step, latest_eval_result))
logging_start_time = get_time()
if log_dir is not None and RANK == 0:
metrics_logger.append_scalar_metrics(
latest_eval_result,
global_step=global_step,
preemption_count=preemption_count,
is_eval=True,
)
if save_checkpoints:
checkpoint_utils.save_checkpoint(
framework=FLAGS.framework,
optimizer_state=optimizer_state,
model_params=model_params,
model_state=model_state,
train_state=train_state,
eval_results=eval_results,
global_step=global_step,
preemption_count=preemption_count,
checkpoint_dir=log_dir,
save_intermediate_checkpoints=FLAGS
.save_intermediate_checkpoints)
logging_end_time = get_time()
train_state['accumulated_logging_time'] += (
logging_end_time - logging_start_time)
_reset_cuda_mem()
except RuntimeError as e:
logging.exception(f'Eval step {global_step} error.\n')
if 'out of memory' in str(e):
logging.warning('Error: GPU out of memory during eval during step '
f'{global_step}, error : {str(e)}.')
_reset_cuda_mem()
train_state['last_step_end_time'] = get_time()
metrics = {'eval_results': eval_results, 'global_step': global_step}
if log_dir is not None and RANK == 0:
metrics_logger.append_scalar_metrics(
{'score': train_state['accumulated_submission_time']},
global_step=global_step,
preemption_count=preemption_count)
metrics_logger.finish()
if save_checkpoints:
checkpoint_utils.save_checkpoint(
framework=FLAGS.framework,
optimizer_state=optimizer_state,
model_params=model_params,
model_state=model_state,
train_state=train_state,
eval_results=eval_results,
global_step=global_step,
preemption_count=preemption_count,
checkpoint_dir=log_dir,
save_intermediate_checkpoints=FLAGS.save_intermediate_checkpoints)
return train_state['accumulated_submission_time'], metrics
def score_submission_on_workload(workload: spec.Workload,
workload_name: str,
submission_path: str,
data_dir: str,
tuning_ruleset: str,
profiler: Optional[Profiler] = None,
max_global_steps: Optional[int] = None,
imagenet_v2_data_dir: Optional[str] = None,
tuning_search_space: Optional[str] = None,
num_tuning_trials: Optional[int] = None,
log_dir: Optional[str] = None,
save_checkpoints: Optional[bool] = True,
hparam_start_index: Optional[bool] = None,
hparam_end_index: Optional[bool] = None,
rng_seed: Optional[int] = None):
# Expand paths because '~' may not be recognized
data_dir = os.path.expanduser(data_dir)
if imagenet_v2_data_dir:
imagenet_v2_data_dir = os.path.expanduser(imagenet_v2_data_dir)
# Remove the trailing '.py' and convert the filepath to a Python module.
submission_module_path = workloads.convert_filepath_to_module(submission_path)
submission_module = importlib.import_module(submission_module_path)
init_optimizer_state = submission_module.init_optimizer_state
update_params = submission_module.update_params
data_selection = submission_module.data_selection
try:
global_batch_size = submission_module.get_batch_size(workload_name)
except ValueError:
base_workload_name = workloads.get_base_workload_name(workload_name)
global_batch_size = submission_module.get_batch_size(base_workload_name)
# n_gpus has to be set here, because we cannot call the first Jax operation
# before pytorch_init().
n_gpus = max(N_GPUS, jax.local_device_count())
if global_batch_size % n_gpus != 0:
raise ValueError(
f'The global batch size ({global_batch_size}) has to be divisible by '
f'the number of GPUs ({n_gpus}).')
if hasattr(submission_module, 'get_eval_batch_size'):
# If the user specifies the eval batch size, use the provided one.
global_eval_batch_size = submission_module.get_eval_batch_size(
workload_name)
else:
global_eval_batch_size = workload.eval_batch_size
if global_eval_batch_size % n_gpus != 0:
raise ValueError(
f'The global eval batch size ({global_eval_batch_size}) has to be '
f'divisible by the number of GPUs ({n_gpus}).')
if tuning_ruleset == 'external':
# If the submission runner is responsible for hyperparameter tuning, load in
# the search space and generate a list of randomly selected hyperparameter
# settings from it.
if tuning_search_space is None:
raise ValueError(
'Must provide a tuning search space JSON file when using external '
'tuning.')
with open(tuning_search_space, 'r', encoding='UTF-8') as search_space_file:
tuning_search_space = halton.generate_search(
json.load(search_space_file), num_tuning_trials)
all_timings = {}
all_metrics = {}
tuning_search_space_iter = itertools.islice(
enumerate(tuning_search_space), hparam_start_index, hparam_end_index)
for hi, hyperparameters in tuning_search_space_iter:
# Generate a new seed from hardware sources of randomness for each trial.
if not rng_seed:
rng_seed = struct.unpack('I', os.urandom(4))[0]
logging.info('Using RNG seed %d', rng_seed)
rng = prng.PRNGKey(rng_seed)
# Because we initialize the PRNGKey with only a single 32 bit int, in the
# Jax implementation this means that rng[0] is all zeros, which means this
# could lead to unintentionally reusing the same seed of only rng[0] were
# ever used. By splitting the rng into 2, we mix the lower and upper 32
# bit ints, ensuring we can safely use either rng[0] or rng[1] as a random
# number.
rng, _ = prng.split(rng, 2)
logging.info(f'--- Tuning run {hi + 1}/{num_tuning_trials} ---')
tuning_dir_name = None
if log_dir is not None:
tuning_dir_name = os.path.join(log_dir, f'trial_{hi + 1}')
logging.info(f'Creating tuning directory at {tuning_dir_name}.')
logger_utils.makedir(tuning_dir_name)
# If existing hyperparameter exists, use saved
# hyperparameters for consistency.
hyperparameters = logger_utils.write_hparams(hyperparameters,
tuning_dir_name)
tuning_search_space[hi] = hyperparameters
with profiler.profile('Train'):
timing, metrics = train_once(workload, workload_name,
global_batch_size,
global_eval_batch_size,
data_dir, imagenet_v2_data_dir,
init_optimizer_state,
update_params, data_selection,
hyperparameters,
rng_seed,
rng,
profiler,
max_global_steps,
tuning_dir_name,
save_checkpoints=save_checkpoints,)
all_timings[hi] = timing
all_metrics[hi] = metrics
logging.info(f'Tuning trial {hi + 1}/{num_tuning_trials}')
logging.info(f'Hyperparameters: {tuning_search_space[hi]}')
logging.info(f'Metrics: {all_metrics[hi]}')
logging.info(f'Timing: {all_timings[hi]}')
num_evals = len(all_metrics[hi]['eval_results'])
logging.info(f'Total number of evals: {num_evals}')
logging.info('=' * 20)
score = min(all_timings)
else:
if tuning_search_space is not None:
raise ValueError(
'Cannot provide a tuning search space when using self tuning.')
if not rng_seed:
rng_seed = struct.unpack('q', os.urandom(8))[0]
rng = prng.PRNGKey(rng_seed)
# If the submission is responsible for tuning itself, we only need to run it
# once and return the total time.
if log_dir is not None:
log_dir = os.path.join(log_dir, 'trial_1')
logging.info(f'Creating directory at {log_dir}.')
logger_utils.makedir(log_dir)
with profiler.profile('Train'):
score, _ = train_once(
workload, workload_name, global_batch_size, global_eval_batch_size,
data_dir, imagenet_v2_data_dir,
init_optimizer_state, update_params, data_selection,
None, rng_seed, rng, profiler, max_global_steps, log_dir,
save_checkpoints=save_checkpoints)
return score
def main(_):
if FLAGS.profile:
profiler = Profiler()
else:
profiler = PassThroughProfiler()
if FLAGS.framework == 'pytorch':
pytorch_init(USE_PYTORCH_DDP, RANK, profiler)
# TODO: remove once issue resolved.
if FLAGS.pytorch_eval_num_workers != 0:
logging.warning(
'WARNING: Setting pytorch_eval_num_workers != 0, will result '
'in incorrect evals currently, see issues/732.')
workload_metadata = WORKLOADS[FLAGS.workload]
# Prevent OOM on librispeech conformer.
base_workload = workloads.get_base_workload_name(FLAGS.workload)
if base_workload == 'librispeech_conformer':
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '0.85'
if FLAGS.set_pytorch_max_split_size:
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256'
# Extend path according to framework.
workload_metadata['workload_path'] = os.path.join(
BASE_WORKLOADS_DIR,
workload_metadata['workload_path'] + f'_{FLAGS.framework}',
'workload.py')
workload_init_kwargs = {}
if FLAGS.librispeech_tokenizer_vocab_path:
workload_init_kwargs['tokenizer_vocab_path'] = (
FLAGS.librispeech_tokenizer_vocab_path)
workload = workloads.import_workload(
workload_path=workload_metadata['workload_path'],
workload_class_name=workload_metadata['workload_class_name'],
workload_init_kwargs=workload_init_kwargs)
experiment_name = FLAGS.experiment_name
if experiment_name and FLAGS.append_timestamp:
experiment_name += datetime.datetime.now().strftime('-%Y-%m-%d-%H-%M-%S')
logging_dir_path = logger_utils.get_log_dir(FLAGS.experiment_dir,
FLAGS.workload,
FLAGS.framework,
experiment_name,
FLAGS.resume_last_run,
FLAGS.overwrite)
score = score_submission_on_workload(
workload=workload,
workload_name=FLAGS.workload,
submission_path=FLAGS.submission_path,
data_dir=FLAGS.data_dir,
tuning_ruleset=FLAGS.tuning_ruleset,
profiler=profiler,
max_global_steps=FLAGS.max_global_steps,
imagenet_v2_data_dir=FLAGS.imagenet_v2_data_dir,
tuning_search_space=FLAGS.tuning_search_space,
num_tuning_trials=FLAGS.num_tuning_trials,
log_dir=logging_dir_path,
save_checkpoints=FLAGS.save_checkpoints,
hparam_start_index=FLAGS.hparam_start_index,
hparam_end_index=FLAGS.hparam_end_index,
rng_seed=FLAGS.rng_seed)
logging.info(f'Final {FLAGS.workload} score: {score}')
if FLAGS.profile:
logging.info(profiler.summary())
if USE_PYTORCH_DDP:
# Cleanup.
dist.destroy_process_group()
if __name__ == '__main__':
flags.mark_flag_as_required('workload')
flags.mark_flag_as_required('framework')
flags.mark_flag_as_required('submission_path')
flags.mark_flag_as_required('experiment_dir')
flags.mark_flag_as_required('experiment_name')
app.run(main)