-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreturns.py
90 lines (73 loc) · 2.87 KB
/
returns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import jax
from jax import numpy as jnp
import numpy as np
import time
import pandas as pd
episode_lengths = [10, 100, 1000]
batch_sizes = [10, 50, 100, 500, 1000, 10_000]
gamma = 0.99
@jax.jit
def serial_discounted_return(rewards):
gammas = gamma ** jnp.arange(rewards.size)
return jnp.cumsum(rewards * gammas)
@jax.jit
def discounted_return_op(carry, inputs):
del_a, r_a, flag_a = carry
del_b, r_b, flag_b = inputs
del_a = del_a * jnp.logical_not(flag_b) + flag_b * jnp.ones_like(del_a)
r_a = r_a * jnp.logical_not(flag_b)
flag_b = jnp.logical_or(flag_a, flag_b)
out = (del_a * del_b, r_a + del_a * r_b, flag_b)
return out
@jax.jit
def paralell_discounted_return(rewards, begin):
d = jnp.ones(rewards.size) * gamma
return jax.lax.associative_scan(discounted_return_op, (d, rewards, begin))
def run(silent=False):
dfs = []
for episode_length in episode_lengths:
for batch_size in batch_sizes:
lens = jax.random.randint(jax.random.PRNGKey(0), (batch_size,), 1, episode_length)
rewards = jax.random.uniform(jax.random.PRNGKey(0), (jnp.sum(lens),))
begin = jnp.zeros(rewards.size, dtype=bool)
ends = jnp.cumsum(lens)
starts = jnp.concatenate([jnp.array([0]), ends])[:-1]
#starts, ends = jnp.cumsum(lens[:-1]), jnp.cumsum(lens[1:])
begin = begin.at[starts].set(True)
start = time.time()
d_returns = []
for s, e in zip(starts, ends):
r = rewards[s:e]
d_return = serial_discounted_return(r)
d_returns.append(d_return)
d_returns = jnp.concatenate(d_returns)
d_returns.block_until_ready()
total = (time.time() - start) * 1000
if not silent:
#print(f"Serial: {batch_size}, {episode_length}: {total}")
dfs.append(pd.DataFrame(
data={"Mode": "Serial", "Batch Size": batch_size, "Max Ep. Length": episode_length, "Time (ms)": total},
index=[0]
))
start = time.time()
_, pd_returns, _ = paralell_discounted_return(rewards, begin)
pd_returns.block_until_ready()
total = (time.time() - start) * 1000
if not silent:
#print(f"Parallel: {batch_size}, {episode_length}: {total}")
dfs.append(pd.DataFrame(
data={"Mode": "Parallel", "Batch Size": batch_size, "Max Ep. Length": episode_length, "Time (ms)": total},
index=[0]
))
assert jnp.allclose(d_returns, pd_returns, atol=1e-5)
return dfs
# Run once to compile
# Run twice to log
run(silent=True)
out_df = pd.DataFrame()
for i in range(5):
dfs = run()
print(dfs)
out_df = pd.concat([out_df, *dfs], ignore_index=True)
out_df.to_csv('return_perf.csv')
breakpoint()