forked from robertmartin8/PyPortfolioOpt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
examples.py
178 lines (154 loc) · 4.55 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import pandas as pd
import numpy as np
from pypfopt.efficient_frontier import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt.hierarchical_risk_parity import hrp_portfolio
from pypfopt.value_at_risk import CVAROpt
from pypfopt import discrete_allocation
# Reading in the data; preparing expected returns and a risk model
df = pd.read_csv("tests/stock_prices.csv", parse_dates=True, index_col="date")
returns = df.pct_change().dropna(how="all")
mu = expected_returns.mean_historical_return(df)
S = risk_models.sample_cov(df)
# Long-only Maximum Sharpe portfolio, with discretised weights
ef = EfficientFrontier(mu, S)
weights = ef.max_sharpe()
ef.portfolio_performance(verbose=True)
latest_prices = discrete_allocation.get_latest_prices(df)
allocation, leftover = discrete_allocation.portfolio(weights, latest_prices)
print("Discrete allocation:", allocation)
print("Funds remaining: ${:.2f}".format(leftover))
"""
Expected annual return: 33.0%
Annual volatility: 21.7%
Sharpe Ratio: 1.43
Discrete allocation: {'MA': 14, 'FB': 12, 'PFE': 51, 'BABA': 5, 'AAPL': 5,
'AMZN': 0, 'BBY': 9, 'SBUX': 6, 'GOOG': 1}
Funds remaining: $12.15
"""
# Long-only minimum volatility portfolio, with a weight cap and regularisation
# e.g if we want at least 15/20 tickers to have non-neglible weights, and no
# asset should have a weight greater than 10%
ef = EfficientFrontier(mu, S, weight_bounds=(0, 0.10), gamma=1)
weights = ef.min_volatility()
print(weights)
ef.portfolio_performance(verbose=True)
"""
{
"GOOG": 0.07350956640872872,
"AAPL": 0.030014017863649482,
"FB": 0.1,
"BABA": 0.1,
"AMZN": 0.020555866446753328,
"GE": 0.04052056082259943,
"AMD": 0.00812443078787937,
"WMT": 0.06506870608367901,
"BAC": 0.008164561664321555,
"GM": 0.1,
"T": 0.06581732376444831,
"UAA": 0.04764331094366604,
"SHLD": 0.04233556511047908,
"XOM": 0.06445358180591973,
"RRC": 0.0313848213281047,
"BBY": 0.02218378020003044,
"MA": 0.068553464907087,
"PFE": 0.059025401478094965,
"JPM": 0.015529411963789761,
"SBUX": 0.03711562842076907,
}
Expected annual return: 22.7%
Annual volatility: 12.7%
Sharpe Ratio: 1.63
"""
# A long/short portfolio maximising return for a target volatility of 10%,
# with a shrunk covariance matrix risk model
shrink = risk_models.CovarianceShrinkage(df)
S = shrink.ledoit_wolf()
ef = EfficientFrontier(mu, S, weight_bounds=(-1, 1))
weights = ef.efficient_risk(target_risk=0.10)
ef.portfolio_performance(verbose=True)
"""
Expected annual return: 29.8%
Annual volatility: 10.0%
Sharpe Ratio: 2.77
"""
# A market-neutral Markowitz portfolio finding the minimum volatility
# for a target return of 20%
ef = EfficientFrontier(mu, S, weight_bounds=(-1, 1))
weights = ef.efficient_return(target_return=0.20, market_neutral=True)
ef.portfolio_performance(verbose=True)
"""
Expected annual return: 20.0%
Annual volatility: 16.5%
Sharpe Ratio: 1.09
"""
# Custom objective
def utility_obj(weights, mu, cov_matrix, k=1):
return -weights.dot(mu) + k * np.dot(weights.T, np.dot(cov_matrix, weights))
ef = EfficientFrontier(mu, S)
ef.custom_objective(utility_obj, ef.expected_returns, ef.cov_matrix, 1)
ef.portfolio_performance(verbose=True)
"""
Expected annual return: 40.1%
Annual volatility: 29.2%
Sharpe Ratio: 1.30
"""
ef.custom_objective(utility_obj, ef.expected_returns, ef.cov_matrix, 2)
ef.portfolio_performance(verbose=True)
"""
Expected annual return: 36.6%
Annual volatility: 24.7%
Sharpe Ratio: 1.39
"""
# CVaR optimisation
vr = CVAROpt(returns)
vr.min_cvar()
print(vr.clean_weights())
"""
{'GOOG': 0.10886,
'AAPL': 0.0,
'FB': 0.02598,
'BABA': 0.57691,
'AMZN': 0.0,
'GE': 0.01049,
'AMD': 0.0138,
'WMT': 0.01581,
'BAC': 0.01049,
'GM': 0.03463,
'T': 0.01049,
'UAA': 0.07782,
'SHLD': 0.04184,
'XOM': 0.00931,
'RRC': 0.0,
'BBY': 0.01748,
'MA': 0.03782,
'PFE': 0.0,
'JPM': 0.0,
'SBUX': 0.00828}
"""
# Hierarchical risk parity
weights = hrp_portfolio(returns)
print(weights)
"""
{'AAPL': 0.022258941278778397,
'AMD': 0.02229402179669211,
'AMZN': 0.016086842079875,
'BABA': 0.07963382071794091,
'BAC': 0.014409222455552262,
'BBY': 0.0340641943824504,
'FB': 0.06272994714663534,
'GE': 0.05519063444162849,
'GM': 0.05557666024185722,
'GOOG': 0.049560084289929286,
'JPM': 0.017675709092515708,
'MA': 0.03812737349732021,
'PFE': 0.07786528342813454,
'RRC': 0.03161528695094597,
'SBUX': 0.039844436656239136,
'SHLD': 0.027113184241298865,
'T': 0.11138956508836476,
'UAA': 0.02711590957075009,
'WMT': 0.10569551148587905,
'XOM': 0.11175337115721229}
"""