forked from TMElyralab/MusePose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_align.py
556 lines (446 loc) · 21.6 KB
/
pose_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import numpy as np
import argparse
import torch
import copy
import cv2
import os
import moviepy.video.io.ImageSequenceClip
from pose.script.dwpose import DWposeDetector, draw_pose
from pose.script.util import size_calculate, warpAffine_kps
'''
Detect dwpose from img, then align it by scale parameters
img: frame from the pose video
detector: DWpose
scales: scale parameters
'''
def align_img(img, pose_ori, scales, detect_resolution, image_resolution):
body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
hands = copy.deepcopy(pose_ori['hands'])
faces = copy.deepcopy(pose_ori['faces'])
'''
计算逻辑:
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
H_in, W_in, C_in = img.shape
video_ratio = W_in / H_in
body_pose[:, 0] = body_pose[:, 0] * video_ratio
hands[:, :, 0] = hands[:, :, 0] * video_ratio
faces[:, :, 0] = faces[:, :, 0] * video_ratio
# scales of 10 body parts
scale_neck = scales["scale_neck"]
scale_face = scales["scale_face"]
scale_shoulder = scales["scale_shoulder"]
scale_arm_upper = scales["scale_arm_upper"]
scale_arm_lower = scales["scale_arm_lower"]
scale_hand = scales["scale_hand"]
scale_body_len = scales["scale_body_len"]
scale_leg_upper = scales["scale_leg_upper"]
scale_leg_lower = scales["scale_leg_lower"]
scale_sum = 0
count = 0
scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, scale_body_len, scale_leg_upper, scale_leg_lower]
for i in range(len(scale_list)):
if not np.isinf(scale_list[i]):
scale_sum = scale_sum + scale_list[i]
count = count + 1
for i in range(len(scale_list)):
if np.isinf(scale_list[i]):
scale_list[i] = scale_sum/count
# offsets of each part
offset = dict()
offset["14_15_16_17_to_0"] = body_pose[[14,15,16,17], :] - body_pose[[0], :]
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]
# neck
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_neck)
neck = body_pose[[0], :]
neck = warpAffine_kps(neck, M)
body_pose[[0], :] = neck
# body_pose_up_shoulder
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face)
body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[14,15,16,17], :] = body_pose_up_shoulder
# shoulder
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_shoulder)
body_pose_shoulder = body_pose[[2,5], :]
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
body_pose[[2,5], :] = body_pose_shoulder
# arm upper left
c_ = body_pose[2]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["3_to_2"] + body_pose[[2], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[3], :] = elbow
# arm lower left
c_ = body_pose[3]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["4_to_3"] + body_pose[[3], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[4], :] = wrist
# hand left
c_ = body_pose[4]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_left_to_4"] + body_pose[[4], :]
hand = warpAffine_kps(hand, M)
hands[1, :, :] = hand
# arm upper right
c_ = body_pose[5]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["6_to_5"] + body_pose[[5], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[6], :] = elbow
# arm lower right
c_ = body_pose[6]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["7_to_6"] + body_pose[[6], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[7], :] = wrist
# hand right
c_ = body_pose[7]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_right_to_7"] + body_pose[[7], :]
hand = warpAffine_kps(hand, M)
hands[0, :, :] = hand
# body len
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_body_len)
body_len = body_pose[[8,11], :]
body_len = warpAffine_kps(body_len, M)
body_pose[[8,11], :] = body_len
# leg upper left
c_ = body_pose[8]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["9_to_8"] + body_pose[[8], :]
knee = warpAffine_kps(knee, M)
body_pose[[9], :] = knee
# leg lower left
c_ = body_pose[9]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["10_to_9"] + body_pose[[9], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[10], :] = ankle
# leg upper right
c_ = body_pose[11]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["12_to_11"] + body_pose[[11], :]
knee = warpAffine_kps(knee, M)
body_pose[[12], :] = knee
# leg lower right
c_ = body_pose[12]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["13_to_12"] + body_pose[[12], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[13], :] = ankle
# none part
body_pose_none = pose_ori['bodies']['candidate'] == -1.
hands_none = pose_ori['hands'] == -1.
faces_none = pose_ori['faces'] == -1.
body_pose[body_pose_none] = -1.
hands[hands_none] = -1.
nan = float('nan')
if len(hands[np.isnan(hands)]) > 0:
print('nan')
faces[faces_none] = -1.
# last check nan -> -1.
body_pose = np.nan_to_num(body_pose, nan=-1.)
hands = np.nan_to_num(hands, nan=-1.)
faces = np.nan_to_num(faces, nan=-1.)
# return
pose_align = copy.deepcopy(pose_ori)
pose_align['bodies']['candidate'] = body_pose
pose_align['hands'] = hands
pose_align['faces'] = faces
return pose_align
def run_align_video_with_filterPose_translate_smooth(args):
vidfn=args.vidfn
imgfn_refer=args.imgfn_refer
outfn=args.outfn
video = cv2.VideoCapture(vidfn)
width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
fps= video.get(cv2.CAP_PROP_FPS)
print("height:", height)
print("width:", width)
print("fps:", fps)
H_in, W_in = height, width
H_out, W_out = size_calculate(H_in,W_in,args.detect_resolution)
H_out, W_out = size_calculate(H_out,W_out,args.image_resolution)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
detector = DWposeDetector(
det_config = args.yolox_config,
det_ckpt = args.yolox_ckpt,
pose_config = args.dwpose_config,
pose_ckpt = args.dwpose_ckpt,
keypoints_only=False
)
detector = detector.to(device)
refer_img = cv2.imread(imgfn_refer)
output_refer, pose_refer = detector(refer_img,detect_resolution=args.detect_resolution, image_resolution=args.image_resolution, output_type='cv2',return_pose_dict=True)
body_ref_img = pose_refer['bodies']['candidate']
hands_ref_img = pose_refer['hands']
faces_ref_img = pose_refer['faces']
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)
skip_frames = args.align_frame
max_frame = args.max_frame
pose_list, video_frame_buffer, video_pose_buffer = [], [], []
cap = cv2.VideoCapture('2.mp4') # 读取视频
while cap.isOpened(): # 当视频被打开时:
ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
if ret: # 若是读取成功
cv2.imshow('frame', frame) # 显示读取到的这一帧画面
key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入
if key == ord('q'): # 若是键盘输入'q',则退出,释放视频
cap.release() # 释放视频
break
else:
cap.release()
cv2.destroyAllWindows() # 关闭所有窗口
for i in range(max_frame):
ret, img = video.read()
if img is None:
break
else:
if i < skip_frames:
continue
video_frame_buffer.append(img)
# estimate scale parameters by the 1st frame in the video
if i==skip_frames:
output_1st_img, pose_1st_img = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
body_1st_img = pose_1st_img['bodies']['candidate']
hands_1st_img = pose_1st_img['hands']
faces_1st_img = pose_1st_img['faces']
'''
计算逻辑:
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
ref_ratio = ref_W / ref_H
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio
video_ratio = width / height
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio
# scale
align_args = dict()
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106
align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
align_args["scale_face"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_lower"] = (s1+s2)/2
# hand
dist_1st_img = np.zeros(10)
dist_ref_img = np.zeros(10)
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])
ratio = 0
count = 0
for i in range (10):
if dist_1st_img[i] != 0:
ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
count = count + 1
if count!=0:
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
else:
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2
# body
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
align_args["scale_body_len"]=dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_upper"] = (s1+s2)/2
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_lower"] = (s1+s2)/2
####################
####################
# need adjust nan
for k,v in align_args.items():
if np.isnan(v):
align_args[k]=1
# centre offset (the offset of key point 1)
offset = body_ref_img[1] - body_1st_img[1]
# pose align
pose_img, pose_ori = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
video_pose_buffer.append(pose_img)
pose_align = align_img(img, pose_ori, align_args, args.detect_resolution, args.image_resolution)
# add centre offset
pose = pose_align
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
pose['hands'] = pose['hands'] + offset
pose['faces'] = pose['faces'] + offset
# h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
pose_list.append(pose)
# stack
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list]
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
hands_list = [pose['hands'][:2] for pose in pose_list]
faces_list = [pose['faces'][:1] for pose in pose_list]
body_seq = np.stack(body_list , axis=0)
body_seq_subset = np.stack(body_list_subset, axis=0)
hands_seq = np.stack(hands_list , axis=0)
faces_seq = np.stack(faces_list , axis=0)
# concatenate and paint results
H = 768 # paint height
W1 = int((H/ref_H * ref_W)//2 *2)
W2 = int((H/height * width)//2 *2)
result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
for i in range(len(body_seq)):
pose_t={}
pose_t["bodies"]={}
pose_t["bodies"]["candidate"]=body_seq[i]
pose_t["bodies"]["subset"]=body_seq_subset[i]
pose_t["hands"]=hands_seq[i]
pose_t["faces"]=faces_seq[i]
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
ref_img = cv2.resize(ref_img, (W1, H))
ref_pose= cv2.resize(output_refer, (W1, H))
output_transformed = draw_pose(
pose_t,
int(H_in*1024/W_in),
1024,
draw_face=False,
)
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
output_transformed = cv2.resize(output_transformed, (W1, H))
video_frame = cv2.resize(video_frame_buffer[i], (W2, H))
video_pose = cv2.resize(video_pose_buffer[i], (W2, H))
res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1)
result_demo.append(res)
result_pose_only.append(output_transformed)
print(f"pose_list len: {len(pose_list)}")
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
clip.write_videofile(outfn, fps=fps)
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
clip.write_videofile(args.outfn_align_pose_video, fps=fps)
print('pose align done')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--detect_resolution', type=int, default=512, help='detect_resolution')
parser.add_argument('--image_resolution', type=int, default=720, help='image_resolution')
parser.add_argument("--yolox_config", type=str, default="./pose/config/yolox_l_8xb8-300e_coco.py")
parser.add_argument("--dwpose_config", type=str, default="./pose/config/dwpose-l_384x288.py")
parser.add_argument("--yolox_ckpt", type=str, default="./pretrained_weights/dwpose/yolox_l_8x8_300e_coco.pth")
parser.add_argument("--dwpose_ckpt", type=str, default="./pretrained_weights/dwpose/dw-ll_ucoco_384.pth")
parser.add_argument('--align_frame', type=int, default=0, help='the frame index of the video to align')
parser.add_argument('--max_frame', type=int, default=300, help='maximum frame number of the video to align')
parser.add_argument('--imgfn_refer', type=str, default="./assets/images/0.jpg", help='refer image path')
parser.add_argument('--vidfn', type=str, default="./assets/videos/0.mp4", help='Input video path')
parser.add_argument('--outfn_align_pose_video', type=str, default=None, help='output path of the aligned video of the refer img')
parser.add_argument('--outfn', type=str, default=None, help='Output path of the alignment visualization')
args = parser.parse_args()
if not os.path.exists("./assets/poses/align"):
# os.makedirs("./assets/poses/")
os.makedirs("./assets/poses/align")
os.makedirs("./assets/poses/align_demo")
img_name = os.path.basename(args.imgfn_refer).split('.')[0]
video_name = os.path.basename(args.vidfn).split('.')[0]
if args.outfn_align_pose_video is None:
args.outfn_align_pose_video = "./assets/poses/align/img_{}_video_{}.mp4".format(img_name, video_name)
if args.outfn is None:
args.outfn = "./assets/poses/align_demo/img_{}_video_{}.mp4".format(img_name, video_name)
run_align_video_with_filterPose_translate_smooth(args)
if __name__ == '__main__':
main()