-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAccuracy.py
90 lines (66 loc) · 1.98 KB
/
Accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import accuracy_score
#np.random.seed(9)
dftrain = pd.read_csv("mnist_train.csv")
dftest = pd.read_csv("mnist_test.csv")
datatrain = dftrain.values
datatest = dftest.values
labelstrain=datatrain[:,0]
labelstest=datatest[:,0]
labelstrain=labelstrain.reshape((labelstrain.shape[0],1))
labelstest=labelstest.reshape((labelstest.shape[0],1))
imagestrain=datatrain[:,1:].T
imagestest=datatest[:,1:].T
np.save("one",imagestrain[:,8].reshape((28,28)))
labeltrain=np.zeros((1,labelstrain.shape[0]))
for i in range(labelstrain.shape[0]):
if labelstrain[i,0] == 5:
labeltrain[0,i]=1
labeltest=np.zeros((1,labelstest.shape[0]))
for i in range(labelstest.shape[0]):
if labelstest[i,0] == 5:
labeltest[0,i]=1
def sigmoid(x):
return 1/(1+np.exp(-x))
#return np.tanh(x)
#return x * (x > 0)
def sigmoidgrad(x):
s=sigmoid(x)
return s*(1-s)
#return 1-sigmoid(x)**2
#return 1. * (x > 0)
def cross_entropy(X,y):
m=X.shape[1]
loss=(1/m)*np.sum((-(y*(np.log(X))+(1-y)*(np.log(1-X)))))
return loss
W1=np.load("W1.npy")
W2=np.load("W2.npy")
W3=np.load("W3.npy")
B1=np.load("B1.npy")
B2=np.load("B2.npy")
B3=np.load("B3.npy")
def forward_propagate(A0,W1,W2,W3,B1,B2,B3):
Z1=W1.dot(A0)+B1
A1=sigmoid(Z1)
Z2=W2.dot(A1)+B2
A2=sigmoid(Z2)
Z3=W3.dot(A2)+B3
A3=sigmoid(Z3)
return Z1,A1,Z2,A2,Z3,A3
A0train=imagestrain/255
A0test=imagestest/255
Z1,A1,Z2,A2,Z3,A3train = forward_propagate(A0train,W1,W2,W3,B1,B2,B3)
A3train=np.where(A3train>0.3,1,0)
Z1,A1,Z2,A2,Z3,A3test = forward_propagate(A0test,W1,W2,W3,B1,B2,B3)
A3test=np.where(A3test>0.3,1,0)
predicttrain=A3train[0,:]
predicttest=A3test[0,:]
realtrain=labeltrain[0,:]
realtest=labeltest[0,:]
print("Train Accuracy :",accuracy_score(realtrain,predicttrain))
print("Test Accuracy :",accuracy_score(realtest,predicttest))