forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximum of all subarrays of size k.cpp
83 lines (71 loc) · 2.14 KB
/
Maximum of all subarrays of size k.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
Maximum of all subarrays of size k
==================================
Given an array arr[] of size N and an integer K. Find the maximum for each and every contiguous subarray of size K.
Example 1:
Input:
N = 9, K = 3
arr[] = 1 2 3 1 4 5 2 3 6
Output:
3 3 4 5 5 5 6
Explanation:
1st contiguous subarray = {1 2 3} Max = 3
2nd contiguous subarray = {2 3 1} Max = 3
3rd contiguous subarray = {3 1 4} Max = 4
4th contiguous subarray = {1 4 5} Max = 5
5th contiguous subarray = {4 5 2} Max = 5
6th contiguous subarray = {5 2 3} Max = 5
7th contiguous subarray = {2 3 6} Max = 6
Example 2:
Input:
N = 10, K = 4
arr[] = 8 5 10 7 9 4 15 12 90 13
Output:
10 10 10 15 15 90 90
Explanation:
1st contiguous subarray = {8 5 10 7}, Max = 10
2nd contiguous subarray = {5 10 7 9}, Max = 10
3rd contiguous subarray = {10 7 9 4}, Max = 10
4th contiguous subarray = {7 9 4 15}, Max = 15
5th contiguous subarray = {9 4 15 12},
Max = 15
6th contiguous subarray = {4 15 12 90},
Max = 90
7th contiguous subarray = {15 12 90 13},
Max = 90
Your Task:
You dont need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K.
Expected Time Complexity: O(N)
Expected Auxiliary Space: O(k)
Constraints:
1 ≤ N ≤ 107
1 ≤ K ≤ N
0 ≤ arr[i] <= 107
*/
vector<int> max_of_subarrays(int *arr, int n, int k)
{
// {value, index}
deque<pair<int, int>> dq;
vector<int> ans;
for (int i = 0; i < min(k, n); ++i)
{
// from back pop elements if they are less than arr[i]
// we want greater to be in front
while (dq.size() && dq.back().first <= arr[i])
dq.pop_back();
dq.push_back({arr[i], i});
}
ans.push_back(dq.front().first);
for (int i = k; i < n; ++i)
{
// remove those from front which are out of window
if (dq.size() && dq.front().second <= i - k)
dq.pop_front();
// from back pop elements if they are less than arr[i]
while (dq.size() && dq.back().first <= arr[i])
dq.pop_back();
dq.push_back({arr[i], i});
ans.push_back(dq.front().first);
}
return ans;
}