diff --git a/pyproject.toml b/pyproject.toml index 32c2bf5b350c..b125e3743517 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -45,6 +45,7 @@ select = [ "I", # isort "N", # pep8-naming "PGH", # pygrep-hooks + "PLC", # Pylint Convention "RUF", # Ruff-specific and unused-noqa "TRY", # tryceratops "UP", # pyupgrade @@ -133,19 +134,26 @@ ignore = [ # A lot of stubs are incomplete on purpose, and that's configured through pyright # Some ANN204 (special method) are autofixable in stubs, but not all. "ANN2", # Missing return type annotation for ... - # Most pep8-naming rules don't apply for third-party stubs like typeshed. - # N811 to N814 could apply, but we often use them to disambiguate a name whilst making it look like a more common one - "N8", + # Ruff 0.8.0 added sorting of __all__ and __slots_. + # There is no consensus on whether we want to apply this to stubs, so keeping the status quo. + # See https://github.com/python/typeshed/pull/13108 + "RUF022", # `__all__` is not sorted + "RUF023", # `{}.__slots__` is not sorted + ### # Rules that are out of the control of stub authors: + ### "F403", # `from . import *` used; unable to detect undefined names # Stubs can sometimes re-export entire modules. # Issues with using a star-imported name will be caught by type-checkers. "F405", # may be undefined, or defined from star imports - # Ruff 0.8.0 added sorting of __all__ and __slots_. - # There is no consensus on whether we want to apply this to stubs, so keeping the status quo. - # See https://github.com/python/typeshed/pull/13108 - "RUF022", - "RUF023", + # Most pep8-naming rules don't apply for third-party stubs like typeshed. + # N811 to N814 could apply, but we often use them to disambiguate a name whilst making it look like a more common one + "N8", # pep8-naming + "PLC2701", # Private name import from external module +] +"lib/ts_utils/**" = [ + # Doesn't affect stubs. The only re-exports we have should be in our local lib ts_utils + "PLC0414", # Import alias does not rename original package ] "*_pb2.pyi" = [ # Leave the docstrings as-is, matching source diff --git a/stdlib/builtins.pyi b/stdlib/builtins.pyi index b0912b8872d7..2d93aab119b8 100644 --- a/stdlib/builtins.pyi +++ b/stdlib/builtins.pyi @@ -90,14 +90,14 @@ _T2 = TypeVar("_T2") _T3 = TypeVar("_T3") _T4 = TypeVar("_T4") _T5 = TypeVar("_T5") -_SupportsNextT = TypeVar("_SupportsNextT", bound=SupportsNext[Any], covariant=True) -_SupportsAnextT = TypeVar("_SupportsAnextT", bound=SupportsAnext[Any], covariant=True) +_SupportsNextT_co = TypeVar("_SupportsNextT_co", bound=SupportsNext[Any], covariant=True) +_SupportsAnextT_co = TypeVar("_SupportsAnextT_co", bound=SupportsAnext[Any], covariant=True) _AwaitableT = TypeVar("_AwaitableT", bound=Awaitable[Any]) _AwaitableT_co = TypeVar("_AwaitableT_co", bound=Awaitable[Any], covariant=True) _P = ParamSpec("_P") -_StartT = TypeVar("_StartT", covariant=True, default=Any) -_StopT = TypeVar("_StopT", covariant=True, default=Any) -_StepT = TypeVar("_StepT", covariant=True, default=Any) +_StartT_co = TypeVar("_StartT_co", covariant=True, default=Any) +_StopT_co = TypeVar("_StopT_co", covariant=True, default=Any) +_StepT_co = TypeVar("_StepT_co", covariant=True, default=Any) class object: __doc__: str | None @@ -940,13 +940,13 @@ class bool(int): def __invert__(self) -> int: ... @final -class slice(Generic[_StartT, _StopT, _StepT]): +class slice(Generic[_StartT_co, _StopT_co, _StepT_co]): @property - def start(self) -> _StartT: ... + def start(self) -> _StartT_co: ... @property - def step(self) -> _StepT: ... + def step(self) -> _StepT_co: ... @property - def stop(self) -> _StopT: ... + def stop(self) -> _StopT_co: ... @overload def __new__(cls, stop: int | None, /) -> slice[int | MaybeNone, int | MaybeNone, int | MaybeNone]: ... @overload @@ -1303,7 +1303,7 @@ class _PathLike(Protocol[AnyStr_co]): def __fspath__(self) -> AnyStr_co: ... if sys.version_info >= (3, 10): - def aiter(async_iterable: SupportsAiter[_SupportsAnextT], /) -> _SupportsAnextT: ... + def aiter(async_iterable: SupportsAiter[_SupportsAnextT_co], /) -> _SupportsAnextT_co: ... class _SupportsSynchronousAnext(Protocol[_AwaitableT_co]): def __anext__(self) -> _AwaitableT_co: ... @@ -1465,7 +1465,7 @@ class _GetItemIterable(Protocol[_T_co]): def __getitem__(self, i: int, /) -> _T_co: ... @overload -def iter(object: SupportsIter[_SupportsNextT], /) -> _SupportsNextT: ... +def iter(object: SupportsIter[_SupportsNextT_co], /) -> _SupportsNextT_co: ... @overload def iter(object: _GetItemIterable[_T], /) -> Iterator[_T]: ... @overload @@ -1672,17 +1672,17 @@ def print( *values: object, sep: str | None = " ", end: str | None = "\n", file: _SupportsWriteAndFlush[str] | None = None, flush: bool ) -> None: ... -_E = TypeVar("_E", contravariant=True) -_M = TypeVar("_M", contravariant=True) +_E_contra = TypeVar("_E_contra", contravariant=True) +_M_contra = TypeVar("_M_contra", contravariant=True) -class _SupportsPow2(Protocol[_E, _T_co]): - def __pow__(self, other: _E, /) -> _T_co: ... +class _SupportsPow2(Protocol[_E_contra, _T_co]): + def __pow__(self, other: _E_contra, /) -> _T_co: ... -class _SupportsPow3NoneOnly(Protocol[_E, _T_co]): - def __pow__(self, other: _E, modulo: None = None, /) -> _T_co: ... +class _SupportsPow3NoneOnly(Protocol[_E_contra, _T_co]): + def __pow__(self, other: _E_contra, modulo: None = None, /) -> _T_co: ... -class _SupportsPow3(Protocol[_E, _M, _T_co]): - def __pow__(self, other: _E, modulo: _M, /) -> _T_co: ... +class _SupportsPow3(Protocol[_E_contra, _M_contra, _T_co]): + def __pow__(self, other: _E_contra, modulo: _M_contra, /) -> _T_co: ... _SupportsSomeKindOfPow = ( # noqa: Y026 # TODO: Use TypeAlias once mypy bugs are fixed _SupportsPow2[Any, Any] | _SupportsPow3NoneOnly[Any, Any] | _SupportsPow3[Any, Any, Any] @@ -1718,11 +1718,11 @@ def pow(base: float, exp: complex | _SupportsSomeKindOfPow, mod: None = None) -> @overload def pow(base: complex, exp: complex | _SupportsSomeKindOfPow, mod: None = None) -> complex: ... @overload -def pow(base: _SupportsPow2[_E, _T_co], exp: _E, mod: None = None) -> _T_co: ... # type: ignore[overload-overlap] +def pow(base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co: ... # type: ignore[overload-overlap] @overload -def pow(base: _SupportsPow3NoneOnly[_E, _T_co], exp: _E, mod: None = None) -> _T_co: ... # type: ignore[overload-overlap] +def pow(base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co: ... # type: ignore[overload-overlap] @overload -def pow(base: _SupportsPow3[_E, _M, _T_co], exp: _E, mod: _M) -> _T_co: ... +def pow(base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co: ... @overload def pow(base: _SupportsSomeKindOfPow, exp: float, mod: None = None) -> Any: ... @overload diff --git a/stdlib/contextlib.pyi b/stdlib/contextlib.pyi index f57e7fa67036..08ac5a28b8b8 100644 --- a/stdlib/contextlib.pyi +++ b/stdlib/contextlib.pyi @@ -33,7 +33,7 @@ _T_co = TypeVar("_T_co", covariant=True) _T_io = TypeVar("_T_io", bound=IO[str] | None) _ExitT_co = TypeVar("_ExitT_co", covariant=True, bound=bool | None, default=bool | None) _F = TypeVar("_F", bound=Callable[..., Any]) -_G = TypeVar("_G", bound=Generator[Any, Any, Any] | AsyncGenerator[Any, Any], covariant=True) +_G_co = TypeVar("_G_co", bound=Generator[Any, Any, Any] | AsyncGenerator[Any, Any], covariant=True) _P = ParamSpec("_P") _SendT_contra = TypeVar("_SendT_contra", contravariant=True, default=None) @@ -68,11 +68,11 @@ class ContextDecorator: def _recreate_cm(self) -> Self: ... def __call__(self, func: _F) -> _F: ... -class _GeneratorContextManagerBase(Generic[_G]): +class _GeneratorContextManagerBase(Generic[_G_co]): # Ideally this would use ParamSpec, but that requires (*args, **kwargs), which this isn't. see #6676 - def __init__(self, func: Callable[..., _G], args: tuple[Any, ...], kwds: dict[str, Any]) -> None: ... - gen: _G - func: Callable[..., _G] + def __init__(self, func: Callable[..., _G_co], args: tuple[Any, ...], kwds: dict[str, Any]) -> None: ... + gen: _G_co + func: Callable[..., _G_co] args: tuple[Any, ...] kwds: dict[str, Any] diff --git a/stdlib/inspect.pyi b/stdlib/inspect.pyi index c6836c837eaa..ee87b6f2b9ea 100644 --- a/stdlib/inspect.pyi +++ b/stdlib/inspect.pyi @@ -143,8 +143,8 @@ if sys.version_info >= (3, 11): _P = ParamSpec("_P") _T = TypeVar("_T") _F = TypeVar("_F", bound=Callable[..., Any]) -_T_cont = TypeVar("_T_cont", contravariant=True) -_V_cont = TypeVar("_V_cont", contravariant=True) +_T_contra = TypeVar("_T_contra", contravariant=True) +_V_contra = TypeVar("_V_contra", contravariant=True) # # Types and members @@ -228,11 +228,11 @@ def isasyncgenfunction(obj: Callable[_P, Any]) -> TypeGuard[Callable[_P, AsyncGe @overload def isasyncgenfunction(obj: object) -> TypeGuard[Callable[..., AsyncGeneratorType[Any, Any]]]: ... -class _SupportsSet(Protocol[_T_cont, _V_cont]): - def __set__(self, instance: _T_cont, value: _V_cont, /) -> None: ... +class _SupportsSet(Protocol[_T_contra, _V_contra]): + def __set__(self, instance: _T_contra, value: _V_contra, /) -> None: ... -class _SupportsDelete(Protocol[_T_cont]): - def __delete__(self, instance: _T_cont, /) -> None: ... +class _SupportsDelete(Protocol[_T_contra]): + def __delete__(self, instance: _T_contra, /) -> None: ... def isasyncgen(object: object) -> TypeIs[AsyncGeneratorType[Any, Any]]: ... def istraceback(object: object) -> TypeIs[TracebackType]: ... diff --git a/stdlib/multiprocessing/connection.pyi b/stdlib/multiprocessing/connection.pyi index 9998239d3119..cd4fa102c0f3 100644 --- a/stdlib/multiprocessing/connection.pyi +++ b/stdlib/multiprocessing/connection.pyi @@ -12,10 +12,10 @@ __all__ = ["Client", "Listener", "Pipe", "wait"] _Address: TypeAlias = str | tuple[str, int] # Defaulting to Any to avoid forcing generics on a lot of pre-existing code -_SendT = TypeVar("_SendT", contravariant=True, default=Any) -_RecvT = TypeVar("_RecvT", covariant=True, default=Any) +_SendT_contra = TypeVar("_SendT_contra", contravariant=True, default=Any) +_RecvT_co = TypeVar("_RecvT_co", covariant=True, default=Any) -class _ConnectionBase(Generic[_SendT, _RecvT]): +class _ConnectionBase(Generic[_SendT_contra, _RecvT_co]): def __init__(self, handle: SupportsIndex, readable: bool = True, writable: bool = True) -> None: ... @property def closed(self) -> bool: ... # undocumented @@ -26,10 +26,10 @@ class _ConnectionBase(Generic[_SendT, _RecvT]): def fileno(self) -> int: ... def close(self) -> None: ... def send_bytes(self, buf: ReadableBuffer, offset: int = 0, size: int | None = None) -> None: ... - def send(self, obj: _SendT) -> None: ... + def send(self, obj: _SendT_contra) -> None: ... def recv_bytes(self, maxlength: int | None = None) -> bytes: ... def recv_bytes_into(self, buf: Any, offset: int = 0) -> int: ... - def recv(self) -> _RecvT: ... + def recv(self) -> _RecvT_co: ... def poll(self, timeout: float | None = 0.0) -> bool: ... def __enter__(self) -> Self: ... def __exit__( @@ -37,10 +37,10 @@ class _ConnectionBase(Generic[_SendT, _RecvT]): ) -> None: ... def __del__(self) -> None: ... -class Connection(_ConnectionBase[_SendT, _RecvT]): ... +class Connection(_ConnectionBase[_SendT_contra, _RecvT_co]): ... if sys.platform == "win32": - class PipeConnection(_ConnectionBase[_SendT, _RecvT]): ... + class PipeConnection(_ConnectionBase[_SendT_contra, _RecvT_co]): ... class Listener: def __init__( @@ -66,8 +66,8 @@ else: def answer_challenge(connection: Connection[Any, Any], authkey: bytes) -> None: ... def wait( - object_list: Iterable[Connection[_SendT, _RecvT] | socket.socket | int], timeout: float | None = None -) -> list[Connection[_SendT, _RecvT] | socket.socket | int]: ... + object_list: Iterable[Connection[_SendT_contra, _RecvT_co] | socket.socket | int], timeout: float | None = None +) -> list[Connection[_SendT_contra, _RecvT_co] | socket.socket | int]: ... def Client(address: _Address, family: str | None = None, authkey: bytes | None = None) -> Connection[Any, Any]: ... # N.B. Keep this in sync with multiprocessing.context.BaseContext.Pipe. diff --git a/stdlib/typing.pyi b/stdlib/typing.pyi index 7c1b171a730b..5875b6915762 100644 --- a/stdlib/typing.pyi +++ b/stdlib/typing.pyi @@ -510,15 +510,15 @@ class Awaitable(Protocol[_T_co]): def __await__(self) -> Generator[Any, Any, _T_co]: ... # Non-default variations to accommodate couroutines, and `AwaitableGenerator` having a 4th type parameter. -_SendT_contra_nd = TypeVar("_SendT_contra_nd", contravariant=True) -_ReturnT_co_nd = TypeVar("_ReturnT_co_nd", covariant=True) +_SendT_nd_contra = TypeVar("_SendT_nd_contra", contravariant=True) +_ReturnT_nd_co = TypeVar("_ReturnT_nd_co", covariant=True) -class Coroutine(Awaitable[_ReturnT_co_nd], Generic[_YieldT_co, _SendT_contra_nd, _ReturnT_co_nd]): +class Coroutine(Awaitable[_ReturnT_nd_co], Generic[_YieldT_co, _SendT_nd_contra, _ReturnT_nd_co]): __name__: str __qualname__: str @abstractmethod - def send(self, value: _SendT_contra_nd, /) -> _YieldT_co: ... + def send(self, value: _SendT_nd_contra, /) -> _YieldT_co: ... @overload @abstractmethod def throw( @@ -534,9 +534,9 @@ class Coroutine(Awaitable[_ReturnT_co_nd], Generic[_YieldT_co, _SendT_contra_nd, # The parameters correspond to Generator, but the 4th is the original type. @type_check_only class AwaitableGenerator( - Awaitable[_ReturnT_co_nd], - Generator[_YieldT_co, _SendT_contra_nd, _ReturnT_co_nd], - Generic[_YieldT_co, _SendT_contra_nd, _ReturnT_co_nd, _S], + Awaitable[_ReturnT_nd_co], + Generator[_YieldT_co, _SendT_nd_contra, _ReturnT_nd_co], + Generic[_YieldT_co, _SendT_nd_contra, _ReturnT_nd_co, _S], metaclass=ABCMeta, ): ... diff --git a/stubs/WTForms/wtforms/validators.pyi b/stubs/WTForms/wtforms/validators.pyi index a5d1c4ca6304..cbe04b288fc4 100644 --- a/stubs/WTForms/wtforms/validators.pyi +++ b/stubs/WTForms/wtforms/validators.pyi @@ -42,7 +42,7 @@ __all__ = ( "Disabled", ) -_ValuesT = TypeVar("_ValuesT", bound=Collection[Any], contravariant=True) +_ValuesT_contra = TypeVar("_ValuesT_contra", bound=Collection[Any], contravariant=True) class ValidationError(ValueError): def __init__(self, message: str = "", *args: object) -> None: ... @@ -150,9 +150,13 @@ class AnyOf: @overload def __init__(self, values: Collection[Any], message: str | None = None, values_formatter: None = None) -> None: ... @overload - def __init__(self, values: _ValuesT, message: str | None, values_formatter: Callable[[_ValuesT], str]) -> None: ... + def __init__( + self, values: _ValuesT_contra, message: str | None, values_formatter: Callable[[_ValuesT_contra], str] + ) -> None: ... @overload - def __init__(self, values: _ValuesT, message: str | None = None, *, values_formatter: Callable[[_ValuesT], str]) -> None: ... + def __init__( + self, values: _ValuesT_contra, message: str | None = None, *, values_formatter: Callable[[_ValuesT_contra], str] + ) -> None: ... def __call__(self, form: BaseForm, field: Field) -> None: ... @staticmethod def default_values_formatter(values: Iterable[object]) -> str: ... @@ -164,9 +168,13 @@ class NoneOf: @overload def __init__(self, values: Collection[Any], message: str | None = None, values_formatter: None = None) -> None: ... @overload - def __init__(self, values: _ValuesT, message: str | None, values_formatter: Callable[[_ValuesT], str]) -> None: ... + def __init__( + self, values: _ValuesT_contra, message: str | None, values_formatter: Callable[[_ValuesT_contra], str] + ) -> None: ... @overload - def __init__(self, values: _ValuesT, message: str | None = None, *, values_formatter: Callable[[_ValuesT], str]) -> None: ... + def __init__( + self, values: _ValuesT_contra, message: str | None = None, *, values_formatter: Callable[[_ValuesT_contra], str] + ) -> None: ... def __call__(self, form: BaseForm, field: Field) -> None: ... @staticmethod def default_values_formatter(v: Iterable[object]) -> str: ... diff --git a/stubs/networkx/networkx/algorithms/operators/binary.pyi b/stubs/networkx/networkx/algorithms/operators/binary.pyi index ef7f4943ca52..52b58c2b19d7 100644 --- a/stubs/networkx/networkx/algorithms/operators/binary.pyi +++ b/stubs/networkx/networkx/algorithms/operators/binary.pyi @@ -13,12 +13,12 @@ def difference(G, H): ... @_dispatchable def symmetric_difference(G, H): ... -_X = TypeVar("_X", bound=Hashable, covariant=True) -_Y = TypeVar("_Y", bound=Hashable, covariant=True) +_X_co = TypeVar("_X_co", bound=Hashable, covariant=True) +_Y_co = TypeVar("_Y_co", bound=Hashable, covariant=True) # GT = TypeVar('GT', bound=Graph[_Node]) # TODO: This does not handle the cases when graphs of different types are passed which is allowed @_dispatchable -def compose(G: DiGraph[_X], H: DiGraph[_Y]) -> DiGraph[_X | _Y]: ... +def compose(G: DiGraph[_X_co], H: DiGraph[_Y_co]) -> DiGraph[_X_co | _Y_co]: ... @_dispatchable -def union(G: DiGraph[_X], H: DiGraph[_Y], rename=()) -> DiGraph[_X | _Y]: ... +def union(G: DiGraph[_X_co], H: DiGraph[_Y_co], rename=()) -> DiGraph[_X_co | _Y_co]: ... diff --git a/stubs/pynput/pynput/_util.pyi b/stubs/pynput/pynput/_util.pyi index 9b9affebf48d..c561e504bca2 100644 --- a/stubs/pynput/pynput/_util.pyi +++ b/stubs/pynput/pynput/_util.pyi @@ -7,7 +7,7 @@ from typing import Any, ClassVar, Generic, TypedDict, TypeVar from typing_extensions import ParamSpec, Self _T = TypeVar("_T") -_AbstractListener_T = TypeVar("_AbstractListener_T", bound=AbstractListener) +_AbstractListenerT = TypeVar("_AbstractListenerT", bound=AbstractListener) _P = ParamSpec("_P") class _RESOLUTIONS(TypedDict): @@ -49,15 +49,15 @@ class AbstractListener(threading.Thread): def _stop_platform(self) -> None: ... # undocumented def join(self, timeout: float | None = None, *args: Any) -> None: ... -class Events(Generic[_T, _AbstractListener_T]): - _Listener: type[_AbstractListener_T] | None # undocumented +class Events(Generic[_T, _AbstractListenerT]): + _Listener: type[_AbstractListenerT] | None # undocumented class Event: def __eq__(self, other: object) -> bool: ... _event_queue: Queue[_T] # undocumented _sentinel: object # undocumented - _listener: _AbstractListener_T # undocumented + _listener: _AbstractListenerT # undocumented start: Callable[[], None] def __init__(self, *args: Any, **kwargs: Any) -> None: ... def __enter__(self) -> Self: ... diff --git a/stubs/pyserial/serial/tools/miniterm.pyi b/stubs/pyserial/serial/tools/miniterm.pyi index b53d8d074a61..2d541ea056ba 100644 --- a/stubs/pyserial/serial/tools/miniterm.pyi +++ b/stubs/pyserial/serial/tools/miniterm.pyi @@ -8,10 +8,10 @@ from typing_extensions import Self from serial import Serial -_AnyStr_T = TypeVar("_AnyStr_T", contravariant=True) +_AnyStrT_contra = TypeVar("_AnyStrT_contra", contravariant=True) @type_check_only -class _SupportsWriteAndFlush(SupportsWrite[_AnyStr_T], SupportsFlush, Protocol): ... +class _SupportsWriteAndFlush(SupportsWrite[_AnyStrT_contra], SupportsFlush, Protocol): ... @type_check_only class _SupportsRead(Protocol): diff --git a/stubs/tensorflow/tensorflow/data/__init__.pyi b/stubs/tensorflow/tensorflow/data/__init__.pyi index 0ff8a7ea6a91..305043f7248f 100644 --- a/stubs/tensorflow/tensorflow/data/__init__.pyi +++ b/stubs/tensorflow/tensorflow/data/__init__.pyi @@ -14,21 +14,21 @@ from tensorflow.dtypes import DType from tensorflow.io import _CompressionTypes from tensorflow.python.trackable.base import Trackable -_T1 = TypeVar("_T1", covariant=True) +_T1_co = TypeVar("_T1_co", covariant=True) _T2 = TypeVar("_T2") _T3 = TypeVar("_T3") -class Iterator(_Iterator[_T1], Trackable, ABC): +class Iterator(_Iterator[_T1_co], Trackable, ABC): @property @abstractmethod def element_spec(self) -> ContainerGeneric[TypeSpec[Any]]: ... @abstractmethod - def get_next(self) -> _T1: ... + def get_next(self) -> _T1_co: ... @abstractmethod - def get_next_as_optional(self) -> tf.experimental.Optional[_T1]: ... + def get_next_as_optional(self) -> tf.experimental.Optional[_T1_co]: ... -class Dataset(ABC, Generic[_T1]): - def apply(self, transformation_func: Callable[[Dataset[_T1]], Dataset[_T2]]) -> Dataset[_T2]: ... +class Dataset(ABC, Generic[_T1_co]): + def apply(self, transformation_func: Callable[[Dataset[_T1_co]], Dataset[_T2]]) -> Dataset[_T2]: ... def as_numpy_iterator(self) -> Iterator[np.ndarray[Any, Any]]: ... def batch( self, @@ -37,10 +37,10 @@ class Dataset(ABC, Generic[_T1]): num_parallel_calls: int | None = None, deterministic: bool | None = None, name: str | None = None, - ) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... def bucket_by_sequence_length( self, - element_length_func: Callable[[_T1], ScalarTensorCompatible], + element_length_func: Callable[[_T1_co], ScalarTensorCompatible], bucket_boundaries: Sequence[int], bucket_batch_sizes: Sequence[int], padded_shapes: ContainerGeneric[tf.TensorShape | TensorCompatible] | None = None, @@ -49,14 +49,14 @@ class Dataset(ABC, Generic[_T1]): no_padding: bool = False, drop_remainder: bool = False, name: str | None = None, - ) -> Dataset[_T1]: ... - def cache(self, filename: str = "", name: str | None = None) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... + def cache(self, filename: str = "", name: str | None = None) -> Dataset[_T1_co]: ... def cardinality(self) -> int: ... @staticmethod def choose_from_datasets( datasets: Sequence[Dataset[_T2]], choice_dataset: Dataset[tf.Tensor], stop_on_empty_dataset: bool = True ) -> Dataset[_T2]: ... - def concatenate(self, dataset: Dataset[_T1], name: str | None = None) -> Dataset[_T1]: ... + def concatenate(self, dataset: Dataset[_T1_co], name: str | None = None) -> Dataset[_T1_co]: ... @staticmethod def counter( start: ScalarTensorCompatible = 0, step: ScalarTensorCompatible = 1, dtype: DType = ..., name: str | None = None @@ -64,9 +64,9 @@ class Dataset(ABC, Generic[_T1]): @property @abstractmethod def element_spec(self) -> ContainerGeneric[TypeSpec[Any]]: ... - def enumerate(self, start: ScalarTensorCompatible = 0, name: str | None = None) -> Dataset[tuple[int, _T1]]: ... - def filter(self, predicate: Callable[[_T1], bool | tf.Tensor], name: str | None = None) -> Dataset[_T1]: ... - def flat_map(self, map_func: Callable[[_T1], Dataset[_T2]], name: str | None = None) -> Dataset[_T2]: ... + def enumerate(self, start: ScalarTensorCompatible = 0, name: str | None = None) -> Dataset[tuple[int, _T1_co]]: ... + def filter(self, predicate: Callable[[_T1_co], bool | tf.Tensor], name: str | None = None) -> Dataset[_T1_co]: ... + def flat_map(self, map_func: Callable[[_T1_co], Dataset[_T2]], name: str | None = None) -> Dataset[_T2]: ... # PEP 646 can be used here for a more precise type when better supported. @staticmethod def from_generator( @@ -81,26 +81,26 @@ class Dataset(ABC, Generic[_T1]): def from_tensors(tensors: Any, name: str | None = None) -> Dataset[Any]: ... @staticmethod def from_tensor_slices(tensors: TensorCompatible, name: str | None = None) -> Dataset[Any]: ... - def get_single_element(self, name: str | None = None) -> _T1: ... + def get_single_element(self, name: str | None = None) -> _T1_co: ... def group_by_window( self, - key_func: Callable[[_T1], tf.Tensor], - reduce_func: Callable[[tf.Tensor, Dataset[_T1]], Dataset[_T2]], + key_func: Callable[[_T1_co], tf.Tensor], + reduce_func: Callable[[tf.Tensor, Dataset[_T1_co]], Dataset[_T2]], window_size: ScalarTensorCompatible | None = None, window_size_func: Callable[[tf.Tensor], tf.Tensor] | None = None, name: str | None = None, ) -> Dataset[_T2]: ... - def ignore_errors(self, log_warning: bool = False, name: str | None = None) -> Dataset[_T1]: ... + def ignore_errors(self, log_warning: bool = False, name: str | None = None) -> Dataset[_T1_co]: ... def interleave( self, - map_func: Callable[[_T1], Dataset[_T2]], + map_func: Callable[[_T1_co], Dataset[_T2]], cycle_length: int | None = None, block_length: int | None = None, num_parallel_calls: int | None = None, deterministic: bool | None = None, name: str | None = None, ) -> Dataset[_T2]: ... - def __iter__(self) -> Iterator[_T1]: ... + def __iter__(self) -> Iterator[_T1_co]: ... @staticmethod def list_files( file_pattern: str | Sequence[str] | TensorCompatible, @@ -134,8 +134,8 @@ class Dataset(ABC, Generic[_T1]): padding_values: ContainerGeneric[ScalarTensorCompatible] | None = None, drop_remainder: bool = False, name: str | None = None, - ) -> Dataset[_T1]: ... - def prefetch(self, buffer_size: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... + def prefetch(self, buffer_size: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1_co]: ... def ragged_batch( self, batch_size: ScalarTensorCompatible, @@ -162,62 +162,62 @@ class Dataset(ABC, Generic[_T1]): ) -> Dataset[tf.Tensor]: ... def rebatch( self, batch_size: ScalarTensorCompatible, drop_remainder: bool = False, name: str | None = None - ) -> Dataset[_T1]: ... - def reduce(self, initial_state: _T2, reduce_func: Callable[[_T2, _T1], _T2], name: str | None = None) -> _T2: ... + ) -> Dataset[_T1_co]: ... + def reduce(self, initial_state: _T2, reduce_func: Callable[[_T2, _T1_co], _T2], name: str | None = None) -> _T2: ... def rejection_resample( self, - class_func: Callable[[_T1], ScalarTensorCompatible], + class_func: Callable[[_T1_co], ScalarTensorCompatible], target_dist: TensorCompatible, initial_dist: TensorCompatible | None = None, seed: int | None = None, name: str | None = None, - ) -> Dataset[_T1]: ... - def repeat(self, count: ScalarTensorCompatible | None = None, name: str | None = None) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... + def repeat(self, count: ScalarTensorCompatible | None = None, name: str | None = None) -> Dataset[_T1_co]: ... @staticmethod def sample_from_datasets( - datasets: Sequence[Dataset[_T1]], + datasets: Sequence[Dataset[_T1_co]], weights: TensorCompatible | None = None, seed: int | None = None, stop_on_empty_dataset: bool = False, rerandomize_each_iteration: bool | None = None, - ) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... # Incomplete as tf.train.CheckpointOptions not yet covered. def save( self, path: str, compression: _CompressionTypes = None, - shard_func: Callable[[_T1], int] | None = None, + shard_func: Callable[[_T1_co], int] | None = None, checkpoint_args: Incomplete | None = None, ) -> None: ... def scan( - self, initial_state: _T2, scan_func: Callable[[_T2, _T1], tuple[_T2, _T3]], name: str | None = None + self, initial_state: _T2, scan_func: Callable[[_T2, _T1_co], tuple[_T2, _T3]], name: str | None = None ) -> Dataset[_T3]: ... def shard( self, num_shards: ScalarTensorCompatible, index: ScalarTensorCompatible, name: str | None = None - ) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... def shuffle( self, buffer_size: ScalarTensorCompatible, seed: int | None = None, reshuffle_each_iteration: bool = True, name: str | None = None, - ) -> Dataset[_T1]: ... - def skip(self, count: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... + def skip(self, count: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1_co]: ... def snapshot( self, path: str, compression: _CompressionTypes = "AUTO", - reader_func: Callable[[Dataset[Dataset[_T1]]], Dataset[_T1]] | None = None, - shard_func: Callable[[_T1], ScalarTensorCompatible] | None = None, + reader_func: Callable[[Dataset[Dataset[_T1_co]]], Dataset[_T1_co]] | None = None, + shard_func: Callable[[_T1_co], ScalarTensorCompatible] | None = None, name: str | None = None, - ) -> Dataset[_T1]: ... + ) -> Dataset[_T1_co]: ... def sparse_batch( self, batch_size: ScalarTensorCompatible, row_shape: tf.TensorShape | TensorCompatible, name: str | None = None ) -> Dataset[tf.SparseTensor]: ... - def take(self, count: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1]: ... - def take_while(self, predicate: Callable[[_T1], ScalarTensorCompatible], name: str | None = None) -> Dataset[_T1]: ... - def unbatch(self, name: str | None = None) -> Dataset[_T1]: ... - def unique(self, name: str | None = None) -> Dataset[_T1]: ... + def take(self, count: ScalarTensorCompatible, name: str | None = None) -> Dataset[_T1_co]: ... + def take_while(self, predicate: Callable[[_T1_co], ScalarTensorCompatible], name: str | None = None) -> Dataset[_T1_co]: ... + def unbatch(self, name: str | None = None) -> Dataset[_T1_co]: ... + def unique(self, name: str | None = None) -> Dataset[_T1_co]: ... def window( self, size: ScalarTensorCompatible, @@ -225,8 +225,8 @@ class Dataset(ABC, Generic[_T1]): stride: ScalarTensorCompatible = 1, drop_remainder: bool = False, name: str | None = None, - ) -> Dataset[Dataset[_T1]]: ... - def with_options(self, options: Options, name: str | None = None) -> Dataset[_T1]: ... + ) -> Dataset[Dataset[_T1_co]]: ... + def with_options(self, options: Options, name: str | None = None) -> Dataset[_T1_co]: ... @overload @staticmethod def zip( diff --git a/stubs/tensorflow/tensorflow/distribute/experimental/coordinator.pyi b/stubs/tensorflow/tensorflow/distribute/experimental/coordinator.pyi index cc59692e72ec..92d1f6bcb9ed 100644 --- a/stubs/tensorflow/tensorflow/distribute/experimental/coordinator.pyi +++ b/stubs/tensorflow/tensorflow/distribute/experimental/coordinator.pyi @@ -3,10 +3,10 @@ from typing import Generic, TypeVar from tensorflow._aliases import AnyArray -_Value = TypeVar("_Value", covariant=True) +_Value_co = TypeVar("_Value_co", covariant=True) -class RemoteValue(Generic[_Value]): +class RemoteValue(Generic[_Value_co]): def fetch(self) -> AnyArray: ... - def get(self) -> _Value: ... + def get(self) -> _Value_co: ... def __getattr__(name: str) -> Incomplete: ... diff --git a/stubs/tensorflow/tensorflow/keras/layers/__init__.pyi b/stubs/tensorflow/tensorflow/keras/layers/__init__.pyi index a2a2211b56cf..21e4606f6680 100644 --- a/stubs/tensorflow/tensorflow/keras/layers/__init__.pyi +++ b/stubs/tensorflow/tensorflow/keras/layers/__init__.pyi @@ -11,8 +11,8 @@ from tensorflow.keras.constraints import Constraint from tensorflow.keras.initializers import _Initializer from tensorflow.keras.regularizers import Regularizer, _Regularizer -_InputT = TypeVar("_InputT", contravariant=True) -_OutputT = TypeVar("_OutputT", covariant=True) +_InputT_contra = TypeVar("_InputT_contra", contravariant=True) +_OutputT_co = TypeVar("_OutputT_co", covariant=True) class InputSpec: dtype: str | None @@ -39,9 +39,9 @@ class InputSpec: # Most layers have input and output type of just Tensor and when we support default type variables, # maybe worth trying. -class Layer(tf.Module, Generic[_InputT, _OutputT]): +class Layer(tf.Module, Generic[_InputT_contra, _OutputT_co]): # The most general type is ContainerGeneric[InputSpec] as it really - # depends on _InputT. For most Layers it is just InputSpec + # depends on _InputT_contra. For most Layers it is just InputSpec # though. Maybe describable with HKT? input_spec: InputSpec | Any @@ -65,11 +65,13 @@ class Layer(tf.Module, Generic[_InputT, _OutputT]): # *args/**kwargs are allowed, but have obscure footguns and tensorflow documentation discourages their usage. # First argument will automatically be cast to layer's compute dtype, but any other tensor arguments will not be. # Also various tensorflow tools/apis can misbehave if they encounter a layer with *args/**kwargs. - def __call__(self, inputs: _InputT, *, training: bool = False, mask: TensorCompatible | None = None) -> _OutputT: ... - def call(self, inputs: _InputT, /) -> _OutputT: ... + def __call__( + self, inputs: _InputT_contra, *, training: bool = False, mask: TensorCompatible | None = None + ) -> _OutputT_co: ... + def call(self, inputs: _InputT_contra, /) -> _OutputT_co: ... - # input_shape's real type depends on _InputT, but we can't express that without HKT. - # For example _InputT tf.Tensor -> tf.TensorShape, _InputT dict[str, tf.Tensor] -> dict[str, tf.TensorShape]. + # input_shape's real type depends on _InputT_contra, but we can't express that without HKT. + # For example _InputT_contra tf.Tensor -> tf.TensorShape, _InputT_contra dict[str, tf.Tensor] -> dict[str, tf.TensorShape]. def build(self, input_shape: Any, /) -> None: ... @overload def compute_output_shape(self: Layer[tf.Tensor, tf.Tensor], input_shape: tf.TensorShape, /) -> tf.TensorShape: ... diff --git a/stubs/tensorflow/tensorflow/keras/models.pyi b/stubs/tensorflow/tensorflow/keras/models.pyi index e024ed5c26fb..262bd49c897f 100644 --- a/stubs/tensorflow/tensorflow/keras/models.pyi +++ b/stubs/tensorflow/tensorflow/keras/models.pyi @@ -9,14 +9,14 @@ import numpy.typing as npt import tensorflow as tf from tensorflow import Variable from tensorflow._aliases import ContainerGeneric, ShapeLike, TensorCompatible -from tensorflow.keras.layers import Layer, _InputT, _OutputT +from tensorflow.keras.layers import Layer, _InputT_contra, _OutputT_co from tensorflow.keras.optimizers import Optimizer _Loss: TypeAlias = str | tf.keras.losses.Loss | Callable[[TensorCompatible, TensorCompatible], tf.Tensor] _Metric: TypeAlias = str | tf.keras.metrics.Metric | Callable[[TensorCompatible, TensorCompatible], tf.Tensor] | None # Missing keras.src.backend.tensorflow.trainer.TensorFlowTrainer as a base class, which is not exposed by tensorflow -class Model(Layer[_InputT, _OutputT]): +class Model(Layer[_InputT_contra, _OutputT_co]): _train_counter: tf.Variable _test_counter: tf.Variable optimizer: Optimizer | None @@ -27,13 +27,15 @@ class Model(Layer[_InputT, _OutputT]): ) -> tf.Tensor | None: ... stop_training: bool - def __new__(cls, *args: Any, **kwargs: Any) -> Model[_InputT, _OutputT]: ... + def __new__(cls, *args: Any, **kwargs: Any) -> Model[_InputT_contra, _OutputT_co]: ... def __init__(self, *args: Any, **kwargs: Any) -> None: ... def __setattr__(self, name: str, value: Any) -> None: ... def __reduce__(self): ... def build(self, input_shape: ShapeLike) -> None: ... - def __call__(self, inputs: _InputT, *, training: bool = False, mask: TensorCompatible | None = None) -> _OutputT: ... - def call(self, inputs: _InputT, training: bool | None = None, mask: TensorCompatible | None = None) -> _OutputT: ... + def __call__( + self, inputs: _InputT_contra, *, training: bool = False, mask: TensorCompatible | None = None + ) -> _OutputT_co: ... + def call(self, inputs: _InputT_contra, training: bool | None = None, mask: TensorCompatible | None = None) -> _OutputT_co: ... # Ideally loss/metrics/output would share the same structure but higher kinded types are not supported. def compile( self, @@ -106,8 +108,8 @@ class Model(Layer[_InputT, _OutputT]): return_dict: bool = False, **kwargs: Any, ) -> float | list[float]: ... - def predict_step(self, data: _InputT) -> _OutputT: ... - def make_predict_function(self, force: bool = False) -> Callable[[tf.data.Iterator[Incomplete]], _OutputT]: ... + def predict_step(self, data: _InputT_contra) -> _OutputT_co: ... + def make_predict_function(self, force: bool = False) -> Callable[[tf.data.Iterator[Incomplete]], _OutputT_co]: ... def predict( self, x: TensorCompatible | tf.data.Dataset[Incomplete], @@ -115,7 +117,7 @@ class Model(Layer[_InputT, _OutputT]): verbose: Literal["auto", 0, 1, 2] = "auto", steps: int | None = None, callbacks: list[tf.keras.callbacks.Callback] | None = None, - ) -> _OutputT: ... + ) -> _OutputT_co: ... def reset_metrics(self) -> None: ... def train_on_batch( self, @@ -132,7 +134,7 @@ class Model(Layer[_InputT, _OutputT]): sample_weight: npt.NDArray[np.float64] | None = None, return_dict: bool = False, ) -> float | list[float]: ... - def predict_on_batch(self, x: Iterator[_InputT]) -> npt.NDArray[Incomplete]: ... + def predict_on_batch(self, x: Iterator[_InputT_contra]) -> npt.NDArray[Incomplete]: ... @property def trainable_weights(self) -> list[Variable]: ... @property diff --git a/stubs/tensorflow/tensorflow/saved_model/__init__.pyi b/stubs/tensorflow/tensorflow/saved_model/__init__.pyi index 538e8acabdbe..203d144c751f 100644 --- a/stubs/tensorflow/tensorflow/saved_model/__init__.pyi +++ b/stubs/tensorflow/tensorflow/saved_model/__init__.pyi @@ -10,7 +10,7 @@ from tensorflow.saved_model.experimental import VariablePolicy from tensorflow.types.experimental import ConcreteFunction, PolymorphicFunction _P = ParamSpec("_P") -_R = TypeVar("_R", covariant=True) +_R_co = TypeVar("_R_co", covariant=True) class Asset: @property @@ -77,10 +77,10 @@ class SaveOptions: def contains_saved_model(export_dir: str | Path) -> bool: ... -class _LoadedAttributes(Generic[_P, _R]): - signatures: Mapping[str, ConcreteFunction[_P, _R]] +class _LoadedAttributes(Generic[_P, _R_co]): + signatures: Mapping[str, ConcreteFunction[_P, _R_co]] -class _LoadedModel(AutoTrackable, _LoadedAttributes[_P, _R]): +class _LoadedModel(AutoTrackable, _LoadedAttributes[_P, _R_co]): variables: list[tf.Variable] trainable_variables: list[tf.Variable] # TF1 model artifact specific diff --git a/stubs/tensorflow/tensorflow/types/experimental.pyi b/stubs/tensorflow/tensorflow/types/experimental.pyi index 15d2ee854093..5d4a792cb2e3 100644 --- a/stubs/tensorflow/tensorflow/types/experimental.pyi +++ b/stubs/tensorflow/tensorflow/types/experimental.pyi @@ -7,23 +7,23 @@ import tensorflow as tf from tensorflow._aliases import ContainerGeneric _P = ParamSpec("_P") -_R = TypeVar("_R", covariant=True) +_R_co = TypeVar("_R_co", covariant=True) -class Callable(Generic[_P, _R], metaclass=abc.ABCMeta): - def __call__(self, *args: _P.args, **kwargs: _P.kwargs) -> _R: ... +class Callable(Generic[_P, _R_co], metaclass=abc.ABCMeta): + def __call__(self, *args: _P.args, **kwargs: _P.kwargs) -> _R_co: ... -class ConcreteFunction(Callable[_P, _R], metaclass=abc.ABCMeta): - def __call__(self, *args: _P.args, **kwargs: _P.kwargs) -> _R: ... +class ConcreteFunction(Callable[_P, _R_co], metaclass=abc.ABCMeta): + def __call__(self, *args: _P.args, **kwargs: _P.kwargs) -> _R_co: ... -class PolymorphicFunction(Callable[_P, _R], metaclass=abc.ABCMeta): +class PolymorphicFunction(Callable[_P, _R_co], metaclass=abc.ABCMeta): @overload @abc.abstractmethod - def get_concrete_function(self, *args: _P.args, **kwargs: _P.kwargs) -> ConcreteFunction[_P, _R]: ... + def get_concrete_function(self, *args: _P.args, **kwargs: _P.kwargs) -> ConcreteFunction[_P, _R_co]: ... @overload @abc.abstractmethod def get_concrete_function( self, *args: ContainerGeneric[tf.TypeSpec[Any]], **kwargs: ContainerGeneric[tf.TypeSpec[Any]] - ) -> ConcreteFunction[_P, _R]: ... + ) -> ConcreteFunction[_P, _R_co]: ... def experimental_get_compiler_ir(self, *args, **kwargs): ... GenericFunction = PolymorphicFunction