-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
269 lines (227 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Code for "ActionCLIP: ActionCLIP: A New Paradigm for Action Recognition"
# arXiv:
# Mengmeng Wang, Jiazheng Xing, Yong Liu
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from utils import norm
from fusion_vision import Fusion
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
# fake, using sigmoid to mocl
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
"""not the original encoder block for transformer, using QuickGelu, and DropPath"""
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, dropout = 0.):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head,dropout=dropout)
self.ln_1 = LayerNorm(d_model)
self.drop_path = DropPath(dropout) if dropout > 0. else nn.Identity()
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor, padding_mask: torch.Tensor = None):
# self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
# return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
# TODO
# Don't know why the author is using attn mask and not using padding mask
# it is not a generative model, so I think dropping attn_mask (mask upper triangle) and adding padding mask is more reasonable
padding_mask = padding_mask.to(dtype=x.dtype, device=x.device) if padding_mask is not None else None
return self.attn(x, x, x, need_weights=False, key_padding_mask=padding_mask)[0]
def forward(self, x: torch.Tensor, padding_mask: torch.Tensor = None):
x = x + self.drop_path(self.attention(self.ln_1(x), padding_mask))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
"""As using nn.MultiheadAttention, we should has input shape = [L, B, D]"""
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, dropout=None):
super().__init__()
if dropout is None:
dropout = [0.0 for i in range(layers)]
print('dropout used:{}'.format(dropout))
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, dropout=dropout[i]) for i in range(layers)])
def forward(self, x: torch.Tensor, padding_mask: torch.Tensor = None):
for resblock in self.resblocks:
x = resblock(x, padding_mask)
return x
class VisualTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, dropout = None, emb_dropout = 0.):
# dropout is a list, for building the transformer
# embed_dropout is for the dropout layer here for embeding right before the attention block
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.dropout = nn.Dropout(emb_dropout)
self.ln_pre = LayerNorm(width)
self.emb_dropout = emb_dropout
if emb_dropout > 0:
print('emb_dropout:{}'.format(emb_dropout))
## Attention Blocks
self.transformer = Transformer(width, layers, heads, dropout=dropout)
self.ln_post = LayerNorm(width)
# TODO not sure why we need this proj here, because LN is with a proj already
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width(the out channels), grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# using a small trick to make [width, ] shape class embedding to be like [batch, 1, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
if self.emb_dropout > 0:
x = self.dropout(x)
x = self.ln_pre(x)
# feed into the attention block
x = x.permute(1, 0, 2) # NLD -> LND, required by torch.nn.Multihead attention
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
# only return the cls label
x = self.ln_post(x[:, 0, :])
x = x @ self.proj
return x
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
input_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
dropout = 0., emb_dropout = 0.
):
super().__init__()
self.embed_dim = embed_dim
self.context_length = context_length
if dropout > 0.:
dpr = [x.item() for x in torch.linspace(0, dropout, vision_layers)] # stochastic depth decay rule
else:
dpr = None
vision_heads = vision_width // 64
self.visual = VisualTransformer(
input_resolution=input_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
dropout=dpr,
emb_dropout=emb_dropout
)
# I really think there should be a padding mask here, since the description text is much shorter than 77
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
dropout=dpr
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.dropout = nn.Dropout(emb_dropout)
self.emb_dropout = emb_dropout
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
"""for ddp"""
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower triangle which is the part we are going to pay attention to
return mask
def build_padding_mask(self, text_tokens):
mask = torch.zeros_like(text_tokens, dtype=float)
mask.masked_fill_(text_tokens == 0, float("-inf"))
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text):
padding_mask = self.build_padding_mask(text)
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
if self.emb_dropout > 0:
x = self.dropout(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, padding_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# TODO take features from the eot embedding (eot_token is the highest number in each sequence)
# I do not think it is a good approach
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
b,t,c,h,w = image.size()
image = image.view(-1,c,h,w)
image_features = self.encode_image(image).view(b, t, -1)
text_features = self.encode_text(text)
return image_features, text_features