-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathreduced-gradient.ss
192 lines (180 loc) · 5.69 KB
/
reduced-gradient.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
(library
(reduced-gradient)
(export uniform argmax)
(import (except (rnrs) + - * / sqrt exp log expt sin cos atan = < > <= >=
zero? positive? negative? real? magnitude)
(rnrs r5rs (6))
(AD)
(QobiScheme))
(define *reduced-gradient-debugging-print?* #t)
(define (sqr x) (* x x))
(define (uniform n) (map-n-vector (lambda (i) (/ n)) n))
(define (negate f) (lambda (x) (- (f x))))
(define (simplify-mixture p)
(map-vector (lambda (p) (inexact->exact (round (* 100 p)))) p))
(define (simplify-mixtures p) (map-vector simplify-mixture p))
(define (safe-sum x)
(let loop ((xs (sort (vector->list x) < identity)) (sum 0.0))
(if (null? xs) sum (loop (rest xs) (+ (first xs) sum)))))
(define (dependent-variable x)
(let loop ((xs (sort (vector->list x) > identity)) (difference 1.0))
(if (null? xs) difference (loop (rest xs) (- difference (first xs))))))
(define (proper-mixture? x)
(and (every-vector (lambda (x) (and (not (negative? x)) (<= x 1.0))) x)
(< (abs (- (safe-sum x) 1.0)) 1e-14)))
(define (pinned-at-zero? rx rgx i)
(and (< (vector-ref rx i) 1e-4) (not (negative? (vector-ref rgx i)))))
(define (argmin f x)
(define (v- u v) (map-vector (lambda (u v) (map-vector - u v)) u v))
(define (k*v k v)
(map-vector (lambda (v) (map-vector (lambda (v) (* k v)) v)) v))
(define (magnitude u)
(sqrt
(map-reduce-vector + 0.0 (lambda (u) (map-reduce-vector + 0.0 sqr u)) u)))
(define (distance u v) (magnitude (v- u v)))
(define (j x)
(let loop ((j 0) (jmax -1) (max minus-infinity))
(cond ((= j (vector-length x)) jmax)
((> (vector-ref x j) max) (loop (+ j 1) j (vector-ref x j)))
(else (loop (+ j 1) jmax max)))))
(define (reduce1 x)
(map-vector
(lambda (x) (list->vector (list-remove (vector->list x) (j x)))) x))
(define (expand1 x rx)
(map-vector (lambda (x rx)
(list->vector
(list-insert (vector->list rx) (j x) (dependent-variable rx))))
x
rx))
(define (reduced1 x)
((f-gradient-vector-vector-R (lambda (rx) (f (expand1 x rx)))) (reduce1 x)))
(define (reduce2 x rgx)
(map-vector
(lambda (x rx rgx)
(let ((j (j x)))
(let loop ((i 0) (k 0) (rrx '()))
(cond ((= i (vector-length x)) (list->vector (reverse rrx)))
((= i j) (loop (+ i 1) k rrx))
((pinned-at-zero? rx rgx k) (loop (+ i 1) (+ k 1) rrx))
(else (loop (+ i 1) (+ k 1) (cons (vector-ref rx k) rrx)))))))
x
(reduce1 x)
rgx))
(define (expand2 x rgx rrx)
(map-vector
(lambda (x rx rgx rrx)
(let ((j (j x)))
(let loop ((i 0) (k 0) (l 0) (ex '()))
(cond
((= i (vector-length x)) (list->vector (reverse ex)))
((= i j) (loop (+ i 1) k l (cons (dependent-variable rrx) ex)))
((pinned-at-zero? rx rgx k) (loop (+ i 1) (+ k 1) l (cons 0.0 ex)))
(else (loop (+ i 1) (+ k 1) (+ l 1) (cons (vector-ref rrx l) ex)))))))
x
(reduce1 x)
rgx
rrx))
(define (reduced2 x rgx)
(map-vector
(lambda (x rx rgx)
(let ((j (j x)))
(let loop ((i 0) (k 0) (rrgx '()))
(cond ((= i (vector-length x)) (list->vector (reverse rrgx)))
((= i j) (loop (+ i 1) k rrgx))
((pinned-at-zero? rx rgx k) (loop (+ i 1) (+ k 1) rrgx))
(else (loop (+ i 1) (+ k 1) (cons (vector-ref rgx k) rrgx)))))))
x
(reduce1 x)
rgx))
(let* ((f-rgx (reduced1 x)) (rgx (second f-rgx)))
(if (zero? (magnitude rgx))
x
(let loop ((x x)
(fx (first f-rgx))
(rgx rgx)
(rrgx (reduced2 x rgx))
(eta (/ (magnitude rgx)))
(i 0))
(unless (every-vector proper-mixture? x) (fuck-up))
(when *reduced-gradient-debugging-print?*
(display "x: ")
(write (simplify-mixtures x))
(newline)
(display "rrgx: ")
(write (map-vector
(lambda (x rx rgx rrgx)
(let ((j (j x)))
(let loop ((i 0) (k 0) (l 0) (ex '()))
(cond ((= i (vector-length x)) (list->vector (reverse ex)))
((= i j) (loop (+ i 1) k l (cons 'd ex)))
((pinned-at-zero? rx rgx k)
(loop (+ i 1) (+ k 1) l (cons 'z ex)))
(else (loop (+ i 1)
(+ k 1)
(+ l 1)
(cons (vector-ref rrgx l) ex)))))))
x
(reduce1 x)
rgx
rrgx))
(newline)
(display "fx: ")
(write fx)
(newline)
(display "eta: ")
(write eta)
(newline)
(display "i: ")
(write i)
(newline)
(newline))
(if (some-vector
(lambda (x rx rgx)
(let ((j (j x)))
(let loop ((i 0) (k 0))
(cond
((= i (vector-length x)) #f)
((= i j) (loop (+ i 1) k))
((pinned-at-zero? rx rgx k)
(or (not (zero? (vector-ref rx k))) (loop (+ i 1) (+ k 1))))
(else (loop (+ i 1) (+ k 1)))))))
x
(reduce1 x)
rgx)
(let* ((x-prime (expand2 x rgx (reduce2 x rgx)))
(f-rgx-prime (reduced1 x-prime))
(rgx-prime (second f-rgx-prime)))
(loop x-prime
(first f-rgx-prime)
rgx-prime
(reduced2 x-prime rgx-prime)
eta
i))
(let ((x-prime (expand2 x rgx (v- (reduce2 x rgx) (k*v eta rrgx)))))
(cond
((some-vector
(lambda (x-prime)
(some-vector
(lambda (x-prime) (or (negative? x-prime) (> x-prime 1.0)))
x-prime))
x-prime)
(loop x fx rgx rrgx (/ eta 2.0) 0))
((<= (distance x x-prime) 1e-10)
(when *reduced-gradient-debugging-print?*
(display "distance is ")
(write (distance x x-prime))
(newline))
x)
(else
(let* ((f-rgx-prime (reduced1 x-prime))
(fx-prime (first f-rgx-prime))
(rgx-prime (second f-rgx-prime)))
(if (< fx-prime fx)
(let ((rrgx-prime (reduced2 x-prime rgx-prime)))
(if (= i 2)
(loop
x-prime fx-prime rgx-prime rrgx-prime (* 2.0 eta) 0)
(loop
x-prime fx-prime rgx-prime rrgx-prime eta (+ i 1))))
(loop x fx rgx rrgx (/ eta 2.0) 0)))))))))))
(define (argmax f x) (argmin (negate f) x)))