diff --git a/CHANGELOG.md b/CHANGELOG.md
index 55da962..36b171a 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -2,6 +2,28 @@
+## Version 0.7
+
+- **New method**: `ELECTRE2`.
+- **New preprocessin strategy:** A new way to transform from minimization to
+ maximization criteria: `NegateMinimize()` which reverses the sign of the
+ values of the criteria to be minimized (useful for not breaking distance
+ relations in methods like *TOPSIS*). Additionally the previous we rename the
+ `MinimizeToMaximize()` transformer to `InvertMinimize()`.
+- Now the `RankingResult`, support repeated/tied rankings and some were
+ implemented to deal with these cases.
+
+ - `RankingResult.has_ties_` to see if there are tied values.
+ - `RankingResult.ties_` to see how often values are repeated.
+ - `RankingResult.untided_rank_` to get a ranking with no repeated values.
+ repeated values.
+- `KernelResult` now implements several new properties:
+
+ - `kernel_alternatives_` to know which alternatives are in the kernel.
+ - `kernel_size_` to know the number of alternatives in the kernel.
+ - `kernel_where_` was replaced by `kernel_where_` to standardize the api.
+
+
## Version 0.6
- Support for Python 3.10.
diff --git a/docs/source/_dynamic/CHANGELOG.rst b/docs/source/_dynamic/CHANGELOG.rst
new file mode 100644
index 0000000..141db55
--- /dev/null
+++ b/docs/source/_dynamic/CHANGELOG.rst
@@ -0,0 +1,79 @@
+.. FILE AUTO GENERATED !!
+
+Version 0.7
+-----------
+
+
+* **New method**\ : ``ELECTRE2``.
+* **New preprocessin strategy:** A new way to transform from minimization to
+ maximization criteria: ``NegateMinimize()`` which reverses the sign of the
+ values of the criteria to be minimized (useful for not breaking distance
+ relations in methods like *TOPSIS*\ ). Additionally the previous we rename the
+ ``MinimizeToMaximize()`` transformer to ``InvertMinimize()``.
+*
+ Now the ``RankingResult``\ , support repeated/tied rankings and some were
+ implemented to deal with these cases.
+
+
+ * ``RankingResult.has_ties_`` to see if there are tied values.
+ * ``RankingResult.ties_`` to see how often values are repeated.
+ * ``RankingResult.untided_rank_`` to get a ranking with no repeated values.
+ repeated values.
+
+*
+ ``KernelResult`` now implements several new properties:
+
+
+ * ``kernel_alternatives_`` to know which alternatives are in the kernel.
+ * ``kernel_size_`` to know the number of alternatives in the kernel.
+ * ``kernel_where_`` was replaced by ``kernel_where_`` to standardize the api.
+
+Version 0.6
+-----------
+
+
+* Support for Python 3.10.
+* All the objects of the project are now immutable by design, and can only
+ be mutated troughs the ``object.copy()`` method.
+* Dominance analysis tools (\ ``DecisionMatrix.dominance``\ ).
+* The method ``DecisionMatrix.describe()`` was deprecated and will be removed
+ in version *1.0*.
+* New statistics functionalities ``DecisionMatrix.stats`` accessor.
+*
+ The accessors are now cached in the ``DecisionMatrix``.
+
+*
+ Tutorial for dominance and satisfaction analysis.
+
+*
+ TOPSIS now support hyper-parameters to select different metrics.
+
+* Generalize the idea of accessors in scikit-criteria througth a common
+ framework (\ ``skcriteria.utils.accabc`` module).
+* New deprecation mechanism through the
+* ``skcriteria.utils.decorators.deprecated`` decorator.
+
+Version 0.5
+-----------
+
+In this version scikit-criteria was rewritten from scratch. Among other things:
+
+
+* The model implementation API was simplified.
+* The ``Data`` object was removed in favor of ``DecisionMatrix`` which implements many more useful features for MCDA.
+* Plots were completely re-implemented using `Seaborn `_.
+* Coverage was increased to 100%.
+* Pipelines concept was added (Thanks to `Scikit-learn `_\ ).
+* New documentation. The quick start is totally rewritten!
+
+**Full Changelog**\ : https://github.com/quatrope/scikit-criteria/commits/0.5
+
+Version 0.2
+-----------
+
+First OO stable version.
+
+Version 0.1
+-----------
+
+Only functions.
diff --git a/docs/source/api/index.rst b/docs/source/api/index.rst
index 83613fb..06a96c4 100644
--- a/docs/source/api/index.rst
+++ b/docs/source/api/index.rst
@@ -36,5 +36,3 @@
:maxdepth: 2
utils/index
-
-
diff --git a/docs/source/changelog.rst b/docs/source/changelog.rst
index eb98771..50249d2 100644
--- a/docs/source/changelog.rst
+++ b/docs/source/changelog.rst
@@ -1,4 +1,8 @@
+.. _changelog:
+
+==========================
Changelog
-============
+==========================
-.. include:: _dynamic/CHANGELOG.rst
\ No newline at end of file
+.. Here we render the CHANGELOG.md of the repository as a main page
+.. include:: _dynamic/CHANGELOG.rst
diff --git a/docs/source/conf.py b/docs/source/conf.py
index fd8a70e..55889c6 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -57,7 +57,7 @@
"sphinx.ext.autosummary",
"nbsphinx",
"sphinxcontrib.bibtex",
- "sphinx_copybutton"
+ "sphinx_copybutton",
]
# =============================================================================
# EXTRA CONF
@@ -97,7 +97,7 @@
# General information about the project.
project = skcriteria.NAME
-copyright = "2016-2021, Juan B. Cabral - Nadia A. Luczywo"
+copyright = "2016-2022, Juan B. Cabral - Nadia A. Luczywo"
author = "Juan BC"
# The version info for the project you're documenting, acts as replacement for
diff --git a/docs/source/refs.bib b/docs/source/refs.bib
index ee87afd..f0349de 100644
--- a/docs/source/refs.bib
+++ b/docs/source/refs.bib
@@ -30,6 +30,35 @@ @article{roy1968classement
publisher = {EDP Sciences}
}
+@book{gomez2004tomada,
+ author = {Gomes, Luiz and González-Araya, Marcela and Carignano, Claudia},
+ year = {2004},
+ month = {11},
+ pages = {},
+ title = {Tomada de decisões em cenários complexos},
+ isbn = {85-221-0354-2},
+ publisher = {Thomson}
+}
+
+
+@article{roy1971methode,
+ title = {La m{\'e}thode Electre II},
+ author = {Roy, Bernard and Bertier, Patrice},
+ journal = {Note de travail},
+ volume = {142},
+ year = {1971}
+}
+
+@article{roy1973methode,
+ title = {La M{\'e}thode ELECTRE II(Une application au m{\'e}dia-planning...)},
+ author = {Roy, Bertier and Bertier, Patrice},
+ year = {1973},
+ journal = {VII {\`e}me Conf{\`e}rence internationale de recherch{\'e} op{\'e}rationalle},
+ publisher = {Metra international}
+}
+
+
+
% skcriteria.madm.moora
@article{brauers2006moora,
diff --git a/docs/source/tutorial/quickstart.ipynb b/docs/source/tutorial/quickstart.ipynb
index 27eda2b..5a68a05 100644
--- a/docs/source/tutorial/quickstart.ipynb
+++ b/docs/source/tutorial/quickstart.ipynb
@@ -477,8 +477,8 @@
{
"data": {
"text/plain": [
- "(array(['car 0', 'car 1'], dtype=object),\n",
- " array(['autonomy', 'comfort', 'price'], dtype=object))"
+ "(_ACArray(['car 0', 'car 1'], dtype=object),\n",
+ " _ACArray(['autonomy', 'comfort', 'price'], dtype=object))"
]
},
"execution_count": 10,
@@ -603,7 +603,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAEKCAYAAAAo+19NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaLklEQVR4nO3deZgdZZn38e+vOyuQhC2EnbAjIGFVkSAEDCoyCgqIOCr6jsFRERhGxJVF5YUXdOTFEWzZREBlH2C42AlGkCWBhABhkyWiQIAACWFLuu/5o6rx0NN9ujo5dZ7Tld+Hq65zTp069dxdHe7z9F1PPaWIwMzM0mlLHYCZ2fLOidjMLDEnYjOzxJyIzcwScyI2M0vMidjMLDEnYjOzBpO0sqRLJT0saY6knettP6RZgZmZLUdOA66LiP0lDQNWqLexfEGHmVnjSBoDzAQ2ioIJtmV7xJPbDvA3RMk699whdQjLhed3HJ46hMp78P8eqWXdR9dzmxXOOe1rPXYoMKVmVUdEdOTPNwReAM6VNAGYARweEYv62p9rxGZmQNcA/ouIjojYsWbpqNnVEGB74IyI2A5YBBxTr20nYjMzoDO6Ci/9eAZ4JiLuyl9fSpaY++REbGYGdBGFl3oi4jngr5I2z1ftCTxU7zMtWyM2M2umLvrt6Q7EYcCF+YiJJ4Av1dvYidjMDFjcf8mhsIiYCexYdHsnYjMzoLOfkkOZnIjNzKDf2m+ZnIjNzIDOhBe3ORGbmUFjT9UNkBOxmRmuEZuZJbc44aQKTsRmZkAnyzxdxVJzIjYzA7rcIzYzS8s9YjOzxJyIzcwSWxzp5kBzIjYzAzoTTkbpRGxmBnSFSxNmZkm5Rmxmllina8RmZml1uUZsZpbW29GerG0nYjMzoMs1YjOztDx8zcwsMZ+sMzNLzCfrzMwS6/QFHWZmaS2OdOnQidjMDJ+sMzNLzqUJM7PEfLLOzCwxD18zM0tssS9xNjNLyyfrzMwS88TwZmaJuUdsZpZYl0/WmZml5VslmZkl5lETZmaJuTRhZpZYIy/okPQUsBDoBJZExI71tnciNjOjlFslTYqIF4ts6ERsZkbaS5zTtWxm1kK6QoUXSVMkTa9ZpvTYXQA3SJrRy3v/i3vEZmYMbNRERHQAHXU2mRgRf5O0BnCjpIcj4o99bewesZkZ2TSYRZf+RMTf8sd5wBXA++pt70RsZkY2MXzRpR5JK0oa1f0c2At4oN5nXJowM6Ohk/6MA66QBFmOvSgirqv3gYYnYkn7AnfkXXIzs0GhURd0RMQTwISBfKaMHvE/A/8p6XXgDuB2ssRct2tuZpbS4ipdWRcR+wNIGg98MF8OlbQ+cE9E7N3oNlM76ux/5f0f34FX5r3KlG2OSh1OJY0dO4pjjt6HVVZZESK45tpZXH7F9NRhVcqwIe2cP+VAhg1pp72tjRseeIz/vOnPqcNqmkpe4hwRT0kaAYzMl+7nlXPDeVP5r19cx9G/+UbqUCqrs7OLM391C489/jwjRw7jzF8ewowZT/L03JdSh1YZby/p5MtnXcrrby9mSFsbv/3qgUx75Enu/+tzqUNrihKurCusjBrxd4GdgbHAI8CdwC+AKRHR2ej2WsHsaXMYt8HY1GFU2vz5i5g/fxEAb7zxNnPnvsTqq49yIm6w199eDMCQ9jaGtLURieNppv5GQ5SpjB7xF4BFwNVkNeK7IuLVEtqx5dS4cWPYZJM1mPPw31OHUjltEpd842DWX21lfnfnLGYvJ71hSFuaaHjLEbEFMBmYDuxONozjbkm/lvSlep+tvWzwmXii0aFZBYwYMZTjf7gfvzzjZl5//e3U4VROVwSfPv1C9jjpLN677ppsMm611CE1zUAucW60Ur4CImJ+RFwD/BD4DnAJMAk4q5/PdUTEjhGx47raqIzQbBBrb2/j+GP346ZbHmTanx5NHU6lLXzzLe5+4q9M3Gx86lCaZkm0FV4areF7lPQJSSdJmgbMA04FVgOOAtZsdHu2/PjWUXszd+5LXHrZPalDqaRVVhzJqBHDARg+pJ2dN9mAJ1+Ynziq5umKtsJLo5VRIz4CuAU4GpgREZX/+/G7Fx7ONrtvxZjVR3HR3DM5/7iLue6cW1KHVSlbb7Uue03emr88MY+OM7MK19nn3MZdd7uE1ShjR63IiQd8hDaJNonrZz/KbQ8/mTqspimj5FBUGYn4v4CDgH8BLpZ0UUTMLKGdlnHi505LHULlPfDgM+wx+aTUYVTao8+9yP6nX5g6jGRSDl8r42TdaRGxM7Ab8BJwrqSHJR0rabNGt2dm1giVO1kHEBFPR8TJEbEd8FlgX2BOWe2ZmS2LlIm4tCvrJA0BPkZWptgTmAocV1Z7ZmbLYklXhS5xljSZrAe8N3A38Huyq+oWNbotM7NGqdQlzmTjhi8CjoqIl0vYv5lZw1Vq1ERE7NHofZqZla1SidjMbDByIjYzS6yzSifrzMwGo6qdrDMzG3RcmjAzSyyciM3M0nKP2MwsMfeIzcwS6+xyIjYzS8qjJszMEnNpwswsMZ+sMzNLLCJd207EZma4NGFmlpznmjAzS8ylCTOzxFKWJvrti0s6QNKo/Pn3JV0uafvyQzMza54IFV4arUhR5AcRsVDSRODDwNnAGQ2PxMwsoRjA0mhFEnFn/vhxoCMi/hsYVkIsZmbJRJcKL0VIapd0n6Rr+tu2SCL+m6RfAZ8BrpU0vODnzMwGjRJKE4cDc4psWCShHghcD3wkIl4BVgW+VTQSM7PBIKL40h9J65JVEc4q0na/iTgiXgfmARPzVUuAx4rs3MxssBhIj1jSFEnTa5YpPXb3c+BooKtI2/0OX5N0LLAjsDlwLjAUuADYZSA/pJlZSxvAaIiI6AA6entP0j7AvIiYIWn3IvsrMo54P2A74N48gL93D2czM6uKBl7QsQvwCUl7AyOA0ZIuiIh/7usDRWrEb0fEO6M2JK3YkFDNzFpIo0ZNRMR3ImLdiBgPHATcUi8JQ7FEfHE+amJlSV8BbgJ+XexHMzMbJBIOJO63NBERp0qaDCwgqxP/MCJubHwoZmbplHHFXERMBab2t12Rk3X/BvzBydfMKi3hpD9FShOjgBskTZP0DUnjyg7KzKz5NIClsYqMIz4+IrYCvg6sBdwm6aaGR2JmllLXAJYGG8g0mPOA54CXgDUaH4qZWUItPg3m1yRNBW4GVgO+EhHblB2YmVkzNfIS54Eq0iNeDzgiImY2vnkzsxbRinfokDQ6IhYAp+SvV619PyLmlxybmVnztOjNQy8C9gFmkH1X1EYZwEYlxmVm1lRqxR5xROyTP27YvHDMzBIpOOF7GYqcrLu5yDozs0GtFS9xljQCWAFYXdIq/KM0MRpYp/GhmJkl1IqlCeBQ4AhgbbI6cXciXgD8otywzMyarBUTcUScBpwm6bCIOL2JMZmZNV+LjpoAICJOl7Q1sCXZJMfd688vMzAzs2ZqyVET3fJbJe1OloivBT4G/AlwIjaz6mjx2df2B/YEnouILwETgDGlRmVm1mSK4kujFbnE+Y2I6JK0RNJossl/1mt8KO/2xO+2LbuJ5d5B77k7dQjLhR+t8UDqEJYDRy77Llq5RgxMl7Qy2e2RZgCvAX8uMygzs6Zr5RpxRHwtf3qmpOuA0RFxf7lhmZk1WSsnYgBJ6wAbdG8v6UMR8ccyAzMzayaVMOF7UUVGTZwMfAZ4COjMVwfgRGxm1dHiPeJ9gc0j4q2SYzEzS6alxxEDTwBDASdiM6uuFh818TowM59x7Z1kHBHfLC0qM7Nma/Ee8VX5YmZWWS1bmpDUDhwSEZOaFI+ZWRIpR03UvcQ5IjqBLkm+pNnMqq0VJ4av8RowW9KNwKLula4Rm1mltGppInd5vpiZVVbL1ogBIuI3kkYC60fEI02IycxsuVLk5qH/BMwErstfbyvJoyjMrFoS1oiLzEd8HPA+4BWAiJgJbNT4UMzM0lFX8aXRitSIF0fEq9K7rjpJONDDzKwErVwjBh6UdDDQLmlT4JvAHeWGZWbWXClP1hUpTRwGbEV2efNFwKvA4WUGZWbWdC0+jvjjEfE94HvdKyQdAFzS+HDMzNJoVI9Y0giyaYKHk+XYSyPi2HqfKdIj/k7BdWZmg1fXAJb63gL2iIgJwLbARyV9oN4H+uwRS/oYsDewjqT/X/PWaGBJv6GYmQ0ijeoRR0SQXZEM2RTCQ+mnoFGvR/x3spuFvpk/di9XAR9Z1mDNzFrKAGrEkqZIml6zTKndlaR2STPJ7np/Y0TcVa/pPnvEETELmCXpgohwD9jMqm0APeKI6AA66rzfCWwraWXgCklbR8QDfW1frzQxuzu0HmOI83ZiQvGwzcxaWxnD1yLiFUm3Ah8FBp6IgX16WSdgPXyyzsyqpnGjJsaSXQj3Sj5Pz2Tg5HqfqVeaeLpmx9sBBwMHAE8ClzUkYjOzFtHAS5fXAn6T31ijDbg4Iq6p94F6pYnNgM/my4vAHwD5bh1mVkmNGzVxP7DdQD5TrzTxMDAN2CciHgeQdOTSh2dm1rrS3cO5/vC1TwHPArdK+rWkPUkbq5lZeVpxGsyIuDIiDgK2AG4FjgDWkHSGpL0aH4qZWTqK4kuj9XuJc0QsioiLIuKfgHWB+4BvNz4UM7OEWnzSn3dExMtkg5j7HMhsZjYYlTHhe1EDSsRmZpXV4hPDm5lVXkvfxdnMbLngRGxmlpZ7xGZmqflknZlZWu4Rm5ml5kRsZpaWIl0mdiI2MwP3iM3MUnON2MwsMV/ibGaWmnvEZmZpuTRhZpZa1RKxpNnU+bEiYpsy2jUzW1pV7BHvkz9+PX/8bf74uZLaMzNbJuqq2DjiiHgaQNLkiKi9m+kxku4FjimjXTOzpVbBHnE3SdolIm7PX3yQArdnGozaJK6c/GWef2MhX5l2cepwKunarz3KkBFtqE20tcOeJ2+cOqTKWbAQfnAKPPZkdqfgH38btts6dVTNUeXha18GzpU0Jn/9Sr6ucg7ZdCf+suBFVho6PHUolbbbceMZPtrnmMty4ukw8X1w2gnw9mJ4883UETVRwh5xab1TSe3AbhExAZgATIiIbSPi3rLaTGXNkaOYtPYmXPzEzNShmC21ha/B9Fmw/8ez18OGwuhRaWNqppR3cS6taxERnZI+C/xHRLxaVjut4PvbTebkWbew4pBhqUOpvGk/fhqAjSavwkaTV00cTbU88yysujJ89yR45HHYcnP47mGwwsjUkTVJwkl/yq7X3i7pF5J2lbR999LXxpKmSJouafqCm+4pObTGmLTWJrz01us88PJzqUOpvEk/2pAP/7+Nmfi9DfjL9fN54aFFqUOqlM5OeOgxOOiTcPnZsMII+PVFqaNqHnUVXxqt7GLbtvnjCTXrAtijt40jogPoANj4Dz9JWLEpbofV12XPtTdl97U2ZnjbEFYaOpyfvv8THHXXValDq5yRqw0FYMSYIaz9vtHMf/wNxm65YuKoqmPc2GyZsGX2eq/dlrNEXNVRExExqcz9t4JTZ0/l1NlTAXj/2PX5ly0+4CRcgiVvdhERDB3ZzpI3u3h+1mtsuf/Y1GFVytjVYK2x8ORc2HB9uPNe2GR86qiaqKrzEeejJY4FPpSvug04oeo1Y2u8N19dwp9PmQtAdMJ6E8ew5nbL0ZmkJvne4fCtH8PixbDe2vCT5WjEf2V7xMA5wAPAgfnrzwPnAp8qud0k7nphLne9MDd1GJW00rhhTD51k9RhVN57NoVLO1JHkUiFE/HGEfHpmtfHS5pZcptmZgOWskdc9qiJNyRN7H4haRfgjZLbNDMbuM4ovjRY2T3irwLn11xZ9zLwxZLbNDMbsMrViCWtHxFzI2IWMEHSaICIWFBGe2Zmy6xBoyYkrQecD4wjqzx3RMRp9T5TVmniypqgLouIBU7CZtbKGniJ8xLgqIjYEvgA8HVJW9b7QFmJWDXPNyqpDTOzxokBLPV2E/Fs95w6EbEQmAOsU+8zZdWIo4/nZmYtSQM4CSdpCjClZlVHfmVwz+3GA9sBd9XbX1mJeIKkBWQ945H5c/LXERGjS2rXzGypaAA14trpGPrcn7QScBlwRH+l2bLu0NFexn7NzErTwL/dJQ0lS8IXRsTl/W3vGbbNzKCRoyYEnA3MiYifFflMJW9bZGY2UA0cNbEL2XQOe0iamS971/uAe8RmZtCwHnFE/Il3jxzrlxOxmRkDGzXRaE7EZmZQ6dnXzMwGhYEMX2s0J2IzM6juHTrMzAaNEm4KWpQTsZkZLk2YmaXXla5L7ERsZgYuTZiZpebShJlZak7EZmaJORGbmSXmS5zNzNJyjdjMLDUnYjOzxLqciM3M0nKP2MwsMSdiM7PEOn2Js5lZWuFEbGaWlksTZmaJedSEmVli7hGbmSXmRGxmllhnZ7KmnYjNzMA9YjOz5JyIzcwS86gJM7O0whd0mJkl5kuczcwS63IiNjNLyyfrzMzSCveIzcwSc4/YzCwxD18zM0srEl7i3JasZTOzVhJdxZd+SDpH0jxJDxRp2onYzAyIrii8FHAe8NGibbs0YWYGDb1VUkT8UdL4otsrEp4prBpJUyKiI3UcVeZjXD4f4/5JmgJMqVnV0fOY5Yn4mojYut/9ORE3jqTpEbFj6jiqzMe4fD7GjTGQROwasZlZYk7EZmaJORE3lutq5fMxLp+P8TKS9Dvgz8Dmkp6R9H/qbu8asZlZWu4Rm5kl5kRsZpaYEzEgaV9JW6aOw3on6QBJcyTdOoDPjJd0cJlxDXaSTpD04dRxmGvEAEg6j2y836WpYylC0hoRMS91HM0i6TrgxxHxp4LbDwEmAv8eEfv0s+1ydSy7SWqPiGWe5UbS54Exfbx9X0TcvqxtLBcionILcCUwA3gQmFKz/rWa5/uTXQ/+QWA+8CQwE9gY2Ba4E7gfuAJYJf/MVOBk4G7gUWDXfP0I4FxgNnAfMClff0gey43AU8A3gH/Lt7kTWDVv796auDatfd3Lz/Yh4NLUx7hOfF/Ij9ss4Lf5uvHALfn6m4H18/XnAWfkx+IJYHfgHGAOcF6+zQ+B14BHgFP6OdZX5e3clu/z1fx3emSdeG8Ctkl93Bp4/McDDwMX5sfxUmCF/L2n8n+/9wIH5cd///y9nYA78t/b3cAooD0/5vfkv7tDe2nvR0D0sWyf+ngMliV5AKX8ULBq/jgSeABYLX/9vxJx/vydf5D56/uB3fLnJwA/z59PBX6aP98buCl/fhRwTv58C2BunjAOAR7P/1GPzRPDV/Pt/gM4In9+K7Bt/vxE4LA6P9vNQBfw3tTHuZfYtiL7glq9x+/hauCL+fMvA1fWHPffAwI+CSwA3ktWMptRc0ymAjsWONbP1LS5O9lfOfXi3TVPGC37xbYUv4Px+c+0S/76HLK/DCBLxEfXbHte/v/BMLIvwp3y9aPJ5qGZAnw/XzccmA5s2KO9VfJ/1z2T8FWpj8VgWqpaI/6mpFlkvaL1yHqZhUgaA6wcEbflq35D1gvtdnn+OIPsHz1kfwZfABARDwNPA5vl790aEQsj4gWyf7BX5+tn13z+LOBLktqBzwAX9RHbrsAeZInr2KI/UxPtAVwSES8CRMT8fP3O/ONn+i3Z8ep2dWT/R88Gno+I2ZHd1/xB/nF8atU71jfWtFnEcfnjpyS9dwCfa3V/jX+UBC7g3cf7D71svznwbETcAxARCyJiCbAX8AVJM4G7gNXo8f9SRLwMnN7LPo9fpp9gOVO5RCxpd+DDwM4RMYHsz9cR+du1BfERLJ238sdOis1e91bN866a1101n78M+BiwDzAjIl7qY1+1yfdTkvq9hn0QqD0ePY/VQGcHXFR0Q0kTyb44IPti++EA22plPU/81L4ufIzIjsthEbFtvmwYETf0st3PgIU1r6+JiBkDaGe5V7lETHbi4OWIeF3SFsAHat57XtJ7JLUB+9WsX0hWPiAiXgVeznufAJ8nqznWMw34HICkzYD1yWqahUTEm8D1ZPXSc3vbJk8ce9auovV6xbcAB0haDUDSqvn6O8hqkpAdp2nL0EbRY/3O77QPx/V4/emKfLEBrC9p5/z5wUB/JzkfAdaStBOApFH5Cc/rgX+VNDRfv5mkFXt+OP8rpLZX7N7wAFUxEV8HDJE0BziJrDzR7RjgGrLE8GzN+t8D35J0n6SNgS8Cp0i6n+zE3Qn9tPlLoE3SbLI//Q6JiLf6+UxPF5L1AnvrcUDvSbelkkdEPAj8BLgtLw39LH/rMLLSy/1kX2yHL0MzRY/1/UCnpFmSjqx9Q9IuvPtLDarVK34E+Hr+/8AqZF/wfYqIt8lKYqfnv7cbyf5iPAt4CLg3v9PEr+j7r5Sfkn35/XdETG/IT7Ec8fC1FiHp34ExEfGDXt7bhb57NZdExIGlBlcxkm4kK1/1FGQnQR9sckgNM5CpF0to+ydkJ2LvaXbbg50TcQuQdAXZMLY9uk909Xh/PLBuHx/viog7SgyvUvKy1M5kPeDePBURzzQxpIZKnIiH5b1rGyAnYjOzxKpYIzYzG1SciM3MEnMiNjNLzInYmkbSmpJ+L+kvkmZIujYfC9xzuzvyx6WeQa17H2aDgROxNYUkkU2gNDUiNo6IHYDvAONqthkCEBEfzFeNJ7sgYSDt9NyHWctzIrZmmQQsjogzu1dExCygXdI0SVeRXTyApNfyTU4CdpU0U9KRktolnSLpHkn3Szo03373vvYhaSVJN0u6V9JsSZ9s3o9sVsxAr+U3W1pbk02U1Jvtga0j4ske64+hZk5hSVOAVyNiJ0nDgdsl3dDPPt4E9ouIBZJWB+6UdFV43Ka1ECdiawV395JAe7MXsI2k/fPXY8hmA3u7zj4EnCjpQ2SXkK9DVg55btnDNmsMJ2JrlgfJ5r7tTdEZwbpnA7v+XSuzGff62sfnyOaC3iEiFkt6iqWfec+sFK4RW7PcAgzPywsASNqGbHL2vvScQa3QbGA9jAHm5Ul4ErDBUkVvViL3iK0pIiIk7Qf8XNK3yWq3T5HdSqov78ygRnY3idPIRlLcm4/CeAHYt5+mLwSuzmdrm052GyGzluK5JszMEnNpwswsMSdiM7PEnIjNzBJzIjYzS8yJ2MwsMSdiM7PEnIjNzBL7HwkFaE7bdCksAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAEKCAYAAAAo+19NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaLklEQVR4nO3deZgdZZn38e+vOyuQhC2EnbAjIGFVkSAEDCoyCgqIOCr6jsFRERhGxJVF5YUXdOTFEWzZREBlH2C42AlGkCWBhABhkyWiQIAACWFLuu/5o6rx0NN9ujo5dZ7Tld+Hq65zTp069dxdHe7z9F1PPaWIwMzM0mlLHYCZ2fLOidjMLDEnYjOzxJyIzcwScyI2M0vMidjMLDEnYjOzBpO0sqRLJT0saY6knettP6RZgZmZLUdOA66LiP0lDQNWqLexfEGHmVnjSBoDzAQ2ioIJtmV7xJPbDvA3RMk699whdQjLhed3HJ46hMp78P8eqWXdR9dzmxXOOe1rPXYoMKVmVUdEdOTPNwReAM6VNAGYARweEYv62p9rxGZmQNcA/ouIjojYsWbpqNnVEGB74IyI2A5YBBxTr20nYjMzoDO6Ci/9eAZ4JiLuyl9fSpaY++REbGYGdBGFl3oi4jngr5I2z1ftCTxU7zMtWyM2M2umLvrt6Q7EYcCF+YiJJ4Av1dvYidjMDFjcf8mhsIiYCexYdHsnYjMzoLOfkkOZnIjNzKDf2m+ZnIjNzIDOhBe3ORGbmUFjT9UNkBOxmRmuEZuZJbc44aQKTsRmZkAnyzxdxVJzIjYzA7rcIzYzS8s9YjOzxJyIzcwSWxzp5kBzIjYzAzoTTkbpRGxmBnSFSxNmZkm5Rmxmllina8RmZml1uUZsZpbW29GerG0nYjMzoMs1YjOztDx8zcwsMZ+sMzNLzCfrzMwS6/QFHWZmaS2OdOnQidjMDJ+sMzNLzqUJM7PEfLLOzCwxD18zM0tssS9xNjNLyyfrzMwS88TwZmaJuUdsZpZYl0/WmZml5VslmZkl5lETZmaJuTRhZpZYIy/okPQUsBDoBJZExI71tnciNjOjlFslTYqIF4ts6ERsZkbaS5zTtWxm1kK6QoUXSVMkTa9ZpvTYXQA3SJrRy3v/i3vEZmYMbNRERHQAHXU2mRgRf5O0BnCjpIcj4o99bewesZkZ2TSYRZf+RMTf8sd5wBXA++pt70RsZkY2MXzRpR5JK0oa1f0c2At4oN5nXJowM6Ohk/6MA66QBFmOvSgirqv3gYYnYkn7AnfkXXIzs0GhURd0RMQTwISBfKaMHvE/A/8p6XXgDuB2ssRct2tuZpbS4ipdWRcR+wNIGg98MF8OlbQ+cE9E7N3oNlM76ux/5f0f34FX5r3KlG2OSh1OJY0dO4pjjt6HVVZZESK45tpZXH7F9NRhVcqwIe2cP+VAhg1pp72tjRseeIz/vOnPqcNqmkpe4hwRT0kaAYzMl+7nlXPDeVP5r19cx9G/+UbqUCqrs7OLM391C489/jwjRw7jzF8ewowZT/L03JdSh1YZby/p5MtnXcrrby9mSFsbv/3qgUx75Enu/+tzqUNrihKurCusjBrxd4GdgbHAI8CdwC+AKRHR2ej2WsHsaXMYt8HY1GFU2vz5i5g/fxEAb7zxNnPnvsTqq49yIm6w199eDMCQ9jaGtLURieNppv5GQ5SpjB7xF4BFwNVkNeK7IuLVEtqx5dS4cWPYZJM1mPPw31OHUjltEpd842DWX21lfnfnLGYvJ71hSFuaaHjLEbEFMBmYDuxONozjbkm/lvSlep+tvWzwmXii0aFZBYwYMZTjf7gfvzzjZl5//e3U4VROVwSfPv1C9jjpLN677ppsMm611CE1zUAucW60Ur4CImJ+RFwD/BD4DnAJMAk4q5/PdUTEjhGx47raqIzQbBBrb2/j+GP346ZbHmTanx5NHU6lLXzzLe5+4q9M3Gx86lCaZkm0FV4areF7lPQJSSdJmgbMA04FVgOOAtZsdHu2/PjWUXszd+5LXHrZPalDqaRVVhzJqBHDARg+pJ2dN9mAJ1+Ynziq5umKtsJLo5VRIz4CuAU4GpgREZX/+/G7Fx7ONrtvxZjVR3HR3DM5/7iLue6cW1KHVSlbb7Uue03emr88MY+OM7MK19nn3MZdd7uE1ShjR63IiQd8hDaJNonrZz/KbQ8/mTqspimj5FBUGYn4v4CDgH8BLpZ0UUTMLKGdlnHi505LHULlPfDgM+wx+aTUYVTao8+9yP6nX5g6jGRSDl8r42TdaRGxM7Ab8BJwrqSHJR0rabNGt2dm1giVO1kHEBFPR8TJEbEd8FlgX2BOWe2ZmS2LlIm4tCvrJA0BPkZWptgTmAocV1Z7ZmbLYklXhS5xljSZrAe8N3A38Huyq+oWNbotM7NGqdQlzmTjhi8CjoqIl0vYv5lZw1Vq1ERE7NHofZqZla1SidjMbDByIjYzS6yzSifrzMwGo6qdrDMzG3RcmjAzSyyciM3M0nKP2MwsMfeIzcwS6+xyIjYzS8qjJszMEnNpwswsMZ+sMzNLLCJd207EZma4NGFmlpznmjAzS8ylCTOzxFKWJvrti0s6QNKo/Pn3JV0uafvyQzMza54IFV4arUhR5AcRsVDSRODDwNnAGQ2PxMwsoRjA0mhFEnFn/vhxoCMi/hsYVkIsZmbJRJcKL0VIapd0n6Rr+tu2SCL+m6RfAZ8BrpU0vODnzMwGjRJKE4cDc4psWCShHghcD3wkIl4BVgW+VTQSM7PBIKL40h9J65JVEc4q0na/iTgiXgfmARPzVUuAx4rs3MxssBhIj1jSFEnTa5YpPXb3c+BooKtI2/0OX5N0LLAjsDlwLjAUuADYZSA/pJlZSxvAaIiI6AA6entP0j7AvIiYIWn3IvsrMo54P2A74N48gL93D2czM6uKBl7QsQvwCUl7AyOA0ZIuiIh/7usDRWrEb0fEO6M2JK3YkFDNzFpIo0ZNRMR3ImLdiBgPHATcUi8JQ7FEfHE+amJlSV8BbgJ+XexHMzMbJBIOJO63NBERp0qaDCwgqxP/MCJubHwoZmbplHHFXERMBab2t12Rk3X/BvzBydfMKi3hpD9FShOjgBskTZP0DUnjyg7KzKz5NIClsYqMIz4+IrYCvg6sBdwm6aaGR2JmllLXAJYGG8g0mPOA54CXgDUaH4qZWUItPg3m1yRNBW4GVgO+EhHblB2YmVkzNfIS54Eq0iNeDzgiImY2vnkzsxbRinfokDQ6IhYAp+SvV619PyLmlxybmVnztOjNQy8C9gFmkH1X1EYZwEYlxmVm1lRqxR5xROyTP27YvHDMzBIpOOF7GYqcrLu5yDozs0GtFS9xljQCWAFYXdIq/KM0MRpYp/GhmJkl1IqlCeBQ4AhgbbI6cXciXgD8otywzMyarBUTcUScBpwm6bCIOL2JMZmZNV+LjpoAICJOl7Q1sCXZJMfd688vMzAzs2ZqyVET3fJbJe1OloivBT4G/AlwIjaz6mjx2df2B/YEnouILwETgDGlRmVm1mSK4kujFbnE+Y2I6JK0RNJossl/1mt8KO/2xO+2LbuJ5d5B77k7dQjLhR+t8UDqEJYDRy77Llq5RgxMl7Qy2e2RZgCvAX8uMygzs6Zr5RpxRHwtf3qmpOuA0RFxf7lhmZk1WSsnYgBJ6wAbdG8v6UMR8ccyAzMzayaVMOF7UUVGTZwMfAZ4COjMVwfgRGxm1dHiPeJ9gc0j4q2SYzEzS6alxxEDTwBDASdiM6uuFh818TowM59x7Z1kHBHfLC0qM7Nma/Ee8VX5YmZWWS1bmpDUDhwSEZOaFI+ZWRIpR03UvcQ5IjqBLkm+pNnMqq0VJ4av8RowW9KNwKLula4Rm1mltGppInd5vpiZVVbL1ogBIuI3kkYC60fEI02IycxsuVLk5qH/BMwErstfbyvJoyjMrFoS1oiLzEd8HPA+4BWAiJgJbNT4UMzM0lFX8aXRitSIF0fEq9K7rjpJONDDzKwErVwjBh6UdDDQLmlT4JvAHeWGZWbWXClP1hUpTRwGbEV2efNFwKvA4WUGZWbWdC0+jvjjEfE94HvdKyQdAFzS+HDMzNJoVI9Y0giyaYKHk+XYSyPi2HqfKdIj/k7BdWZmg1fXAJb63gL2iIgJwLbARyV9oN4H+uwRS/oYsDewjqT/X/PWaGBJv6GYmQ0ijeoRR0SQXZEM2RTCQ+mnoFGvR/x3spuFvpk/di9XAR9Z1mDNzFrKAGrEkqZIml6zTKndlaR2STPJ7np/Y0TcVa/pPnvEETELmCXpgohwD9jMqm0APeKI6AA66rzfCWwraWXgCklbR8QDfW1frzQxuzu0HmOI83ZiQvGwzcxaWxnD1yLiFUm3Ah8FBp6IgX16WSdgPXyyzsyqpnGjJsaSXQj3Sj5Pz2Tg5HqfqVeaeLpmx9sBBwMHAE8ClzUkYjOzFtHAS5fXAn6T31ijDbg4Iq6p94F6pYnNgM/my4vAHwD5bh1mVkmNGzVxP7DdQD5TrzTxMDAN2CciHgeQdOTSh2dm1rrS3cO5/vC1TwHPArdK+rWkPUkbq5lZeVpxGsyIuDIiDgK2AG4FjgDWkHSGpL0aH4qZWTqK4kuj9XuJc0QsioiLIuKfgHWB+4BvNz4UM7OEWnzSn3dExMtkg5j7HMhsZjYYlTHhe1EDSsRmZpXV4hPDm5lVXkvfxdnMbLngRGxmlpZ7xGZmqflknZlZWu4Rm5ml5kRsZpaWIl0mdiI2MwP3iM3MUnON2MwsMV/ibGaWmnvEZmZpuTRhZpZa1RKxpNnU+bEiYpsy2jUzW1pV7BHvkz9+PX/8bf74uZLaMzNbJuqq2DjiiHgaQNLkiKi9m+kxku4FjimjXTOzpVbBHnE3SdolIm7PX3yQArdnGozaJK6c/GWef2MhX5l2cepwKunarz3KkBFtqE20tcOeJ2+cOqTKWbAQfnAKPPZkdqfgH38btts6dVTNUeXha18GzpU0Jn/9Sr6ucg7ZdCf+suBFVho6PHUolbbbceMZPtrnmMty4ukw8X1w2gnw9mJ4883UETVRwh5xab1TSe3AbhExAZgATIiIbSPi3rLaTGXNkaOYtPYmXPzEzNShmC21ha/B9Fmw/8ez18OGwuhRaWNqppR3cS6taxERnZI+C/xHRLxaVjut4PvbTebkWbew4pBhqUOpvGk/fhqAjSavwkaTV00cTbU88yysujJ89yR45HHYcnP47mGwwsjUkTVJwkl/yq7X3i7pF5J2lbR999LXxpKmSJouafqCm+4pObTGmLTWJrz01us88PJzqUOpvEk/2pAP/7+Nmfi9DfjL9fN54aFFqUOqlM5OeOgxOOiTcPnZsMII+PVFqaNqHnUVXxqt7GLbtvnjCTXrAtijt40jogPoANj4Dz9JWLEpbofV12XPtTdl97U2ZnjbEFYaOpyfvv8THHXXValDq5yRqw0FYMSYIaz9vtHMf/wNxm65YuKoqmPc2GyZsGX2eq/dlrNEXNVRExExqcz9t4JTZ0/l1NlTAXj/2PX5ly0+4CRcgiVvdhERDB3ZzpI3u3h+1mtsuf/Y1GFVytjVYK2x8ORc2HB9uPNe2GR86qiaqKrzEeejJY4FPpSvug04oeo1Y2u8N19dwp9PmQtAdMJ6E8ew5nbL0ZmkJvne4fCtH8PixbDe2vCT5WjEf2V7xMA5wAPAgfnrzwPnAp8qud0k7nphLne9MDd1GJW00rhhTD51k9RhVN57NoVLO1JHkUiFE/HGEfHpmtfHS5pZcptmZgOWskdc9qiJNyRN7H4haRfgjZLbNDMbuM4ovjRY2T3irwLn11xZ9zLwxZLbNDMbsMrViCWtHxFzI2IWMEHSaICIWFBGe2Zmy6xBoyYkrQecD4wjqzx3RMRp9T5TVmniypqgLouIBU7CZtbKGniJ8xLgqIjYEvgA8HVJW9b7QFmJWDXPNyqpDTOzxokBLPV2E/Fs95w6EbEQmAOsU+8zZdWIo4/nZmYtSQM4CSdpCjClZlVHfmVwz+3GA9sBd9XbX1mJeIKkBWQ945H5c/LXERGjS2rXzGypaAA14trpGPrcn7QScBlwRH+l2bLu0NFexn7NzErTwL/dJQ0lS8IXRsTl/W3vGbbNzKCRoyYEnA3MiYifFflMJW9bZGY2UA0cNbEL2XQOe0iamS971/uAe8RmZtCwHnFE/Il3jxzrlxOxmRkDGzXRaE7EZmZQ6dnXzMwGhYEMX2s0J2IzM6juHTrMzAaNEm4KWpQTsZkZLk2YmaXXla5L7ERsZgYuTZiZpebShJlZak7EZmaJORGbmSXmS5zNzNJyjdjMLDUnYjOzxLqciM3M0nKP2MwsMSdiM7PEOn2Js5lZWuFEbGaWlksTZmaJedSEmVli7hGbmSXmRGxmllhnZ7KmnYjNzMA9YjOz5JyIzcwS86gJM7O0whd0mJkl5kuczcwS63IiNjNLyyfrzMzSCveIzcwSc4/YzCwxD18zM0srEl7i3JasZTOzVhJdxZd+SDpH0jxJDxRp2onYzAyIrii8FHAe8NGibbs0YWYGDb1VUkT8UdL4otsrEp4prBpJUyKiI3UcVeZjXD4f4/5JmgJMqVnV0fOY5Yn4mojYut/9ORE3jqTpEbFj6jiqzMe4fD7GjTGQROwasZlZYk7EZmaJORE3lutq5fMxLp+P8TKS9Dvgz8Dmkp6R9H/qbu8asZlZWu4Rm5kl5kRsZpaYEzEgaV9JW6aOw3on6QBJcyTdOoDPjJd0cJlxDXaSTpD04dRxmGvEAEg6j2y836WpYylC0hoRMS91HM0i6TrgxxHxp4LbDwEmAv8eEfv0s+1ydSy7SWqPiGWe5UbS54Exfbx9X0TcvqxtLBcionILcCUwA3gQmFKz/rWa5/uTXQ/+QWA+8CQwE9gY2Ba4E7gfuAJYJf/MVOBk4G7gUWDXfP0I4FxgNnAfMClff0gey43AU8A3gH/Lt7kTWDVv796auDatfd3Lz/Yh4NLUx7hOfF/Ij9ss4Lf5uvHALfn6m4H18/XnAWfkx+IJYHfgHGAOcF6+zQ+B14BHgFP6OdZX5e3clu/z1fx3emSdeG8Ctkl93Bp4/McDDwMX5sfxUmCF/L2n8n+/9wIH5cd///y9nYA78t/b3cAooD0/5vfkv7tDe2nvR0D0sWyf+ngMliV5AKX8ULBq/jgSeABYLX/9vxJx/vydf5D56/uB3fLnJwA/z59PBX6aP98buCl/fhRwTv58C2BunjAOAR7P/1GPzRPDV/Pt/gM4In9+K7Bt/vxE4LA6P9vNQBfw3tTHuZfYtiL7glq9x+/hauCL+fMvA1fWHPffAwI+CSwA3ktWMptRc0ymAjsWONbP1LS5O9lfOfXi3TVPGC37xbYUv4Px+c+0S/76HLK/DCBLxEfXbHte/v/BMLIvwp3y9aPJ5qGZAnw/XzccmA5s2KO9VfJ/1z2T8FWpj8VgWqpaI/6mpFlkvaL1yHqZhUgaA6wcEbflq35D1gvtdnn+OIPsHz1kfwZfABARDwNPA5vl790aEQsj4gWyf7BX5+tn13z+LOBLktqBzwAX9RHbrsAeZInr2KI/UxPtAVwSES8CRMT8fP3O/ONn+i3Z8ep2dWT/R88Gno+I2ZHd1/xB/nF8atU71jfWtFnEcfnjpyS9dwCfa3V/jX+UBC7g3cf7D71svznwbETcAxARCyJiCbAX8AVJM4G7gNXo8f9SRLwMnN7LPo9fpp9gOVO5RCxpd+DDwM4RMYHsz9cR+du1BfERLJ238sdOis1e91bN866a1101n78M+BiwDzAjIl7qY1+1yfdTkvq9hn0QqD0ePY/VQGcHXFR0Q0kTyb44IPti++EA22plPU/81L4ufIzIjsthEbFtvmwYETf0st3PgIU1r6+JiBkDaGe5V7lETHbi4OWIeF3SFsAHat57XtJ7JLUB+9WsX0hWPiAiXgVeznufAJ8nqznWMw34HICkzYD1yWqahUTEm8D1ZPXSc3vbJk8ce9auovV6xbcAB0haDUDSqvn6O8hqkpAdp2nL0EbRY/3O77QPx/V4/emKfLEBrC9p5/z5wUB/JzkfAdaStBOApFH5Cc/rgX+VNDRfv5mkFXt+OP8rpLZX7N7wAFUxEV8HDJE0BziJrDzR7RjgGrLE8GzN+t8D35J0n6SNgS8Cp0i6n+zE3Qn9tPlLoE3SbLI//Q6JiLf6+UxPF5L1AnvrcUDvSbelkkdEPAj8BLgtLw39LH/rMLLSy/1kX2yHL0MzRY/1/UCnpFmSjqx9Q9IuvPtLDarVK34E+Hr+/8AqZF/wfYqIt8lKYqfnv7cbyf5iPAt4CLg3v9PEr+j7r5Sfkn35/XdETG/IT7Ec8fC1FiHp34ExEfGDXt7bhb57NZdExIGlBlcxkm4kK1/1FGQnQR9sckgNM5CpF0to+ydkJ2LvaXbbg50TcQuQdAXZMLY9uk909Xh/PLBuHx/viog7SgyvUvKy1M5kPeDePBURzzQxpIZKnIiH5b1rGyAnYjOzxKpYIzYzG1SciM3MEnMiNjNLzInYmkbSmpJ+L+kvkmZIujYfC9xzuzvyx6WeQa17H2aDgROxNYUkkU2gNDUiNo6IHYDvAONqthkCEBEfzFeNJ7sgYSDt9NyHWctzIrZmmQQsjogzu1dExCygXdI0SVeRXTyApNfyTU4CdpU0U9KRktolnSLpHkn3Szo03373vvYhaSVJN0u6V9JsSZ9s3o9sVsxAr+U3W1pbk02U1Jvtga0j4ske64+hZk5hSVOAVyNiJ0nDgdsl3dDPPt4E9ouIBZJWB+6UdFV43Ka1ECdiawV395JAe7MXsI2k/fPXY8hmA3u7zj4EnCjpQ2SXkK9DVg55btnDNmsMJ2JrlgfJ5r7tTdEZwbpnA7v+XSuzGff62sfnyOaC3iEiFkt6iqWfec+sFK4RW7PcAgzPywsASNqGbHL2vvScQa3QbGA9jAHm5Ul4ErDBUkVvViL3iK0pIiIk7Qf8XNK3yWq3T5HdSqov78ygRnY3idPIRlLcm4/CeAHYt5+mLwSuzmdrm052GyGzluK5JszMEnNpwswsMSdiM7PEnIjNzBJzIjYzS8yJ2MwsMSdiM7PEnIjNzBL7HwkFaE7bdCksAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
@@ -796,7 +796,7 @@
"\n",
"To solve these problems, we will use two processors:\n",
"\n",
- "- First `MinimizeToMaximize` which inverts the minimizing objectives.\n",
+ "- First `InvertMinimize` which inverts the minimizing objectives.\n",
" by dividing out the inverse of each criterion value ($1/C_j$).\n",
"- Second, `SumScaler` which will divide each criterion value by the total sum \n",
" of the criteria, taking all of them into the range $[0, 1]$.\n",
@@ -893,7 +893,7 @@
}
],
"source": [
- "inverter = invert_objectives.MinimizeToMaximize()\n",
+ "inverter = invert_objectives.InvertMinimize()\n",
"dmt = inverter.transform(dm)\n",
"dmt"
]
@@ -1012,7 +1012,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAFgCAYAAACmKdhBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABvuElEQVR4nO3dd3RVVdrH8e9OrwRSCIEAofckQOiggqjYULFhxd77zLw6o+NYpuhYx65YsINiQ8VGUeklkEKvAUINhEAIhLT9/nEDUhJIuS3J77NWFrnn7LPPc1LYee5uxlqLiIiIiIiI1J6PpwMQERERERGpL5RgiYiIiIiIOIkSLBERERERESdRgiUiIiIiIuIkSrBEREREREScRAmWiIiIiIiIkyjBEvFixpi/GWPednKd+4wxbZ1Zp4iI1B/GmKuMMT9Xsex1xpiZro5JpC5RgiXiZsaYK40xC8sTna3GmB+MMYMrKmut/be19qby6xKMMdYY41eb+1trw6y162pTh4iIeB9jzF+NMT8cc2x1JcdGV1aPtfZja+2ZTorpV2PMTc6oS6SuUIIl4kbGmAeAF4F/A7FAK+A14IIKytYqkXJ1fSIi4nV+BwYaY3wBjDFxgD/Q85hj7cvLiogLKMEScRNjTATwBHCntfZLa22BtbbYWvuttfYvxpjHjDETjTEfGWP2AteVH/uovIpDjWFeee/XgPJ6bzDGLDfG7DbG/GSMaX3EPa0x5k5jzGpg9RHH2pd/fq4xZrExZq8xZpMx5jE3fTlERMT5FuBIqJLLXw8BpgMrjzm2FigwxrxTPpJiszHmn0ckYUcN+zPGnGmMWWmM2WOMec0Y89uxvVLGmGfL26H1xpizy4/9q/x+r5S3W68YhxeMMTvK255MY0x3l31FRDxACZaI+wwAgoCvTlDmAmAi0Bj4+Jhzp5T/27h8mN8cY8wFwN+AUUAMMAP49JjrLgT6AV0ruF8BcG35/c4FbjfGXFilpxEREa9irS0C5vFHe3EKjnZh5jHHfgfGASU4erN6AmcCxw3lM8ZE42iX/gpE4UjWBh5TrF/58Wjgv8A7xhhjrX24/P53lbdbd5Xf5xSgIxABXAbsquWji3gVJVgi7hMF7LTWlpygzBxr7dfW2jJr7YEq1Hkb8B9r7fLyev8NJB/Zi1V+Prei+qy1v1prM8vvl4EjOTu1Gs8kIiLe5Tf+SKaG4EhwZhxz7DfgHOC+8tEUO4AXgIrmZZ0DLC0feVECvARsO6bMBmvtWGttKfA+EIdjGHxFioFwoDNgytuvrTV4ThGvpQRLxH12AdEnmQu1qZp1tgb+Z4zJM8bkAbmAAVpUpU5jTD9jzHRjTI4xZg+OhC26mjGIiIj3+B0YbIyJBGKstauB2TjmZkUC3YEVOIYSbj2i/XgTaFpBfc05oh2x1log+5gy2444v7/807CKgrPWTgNeAV4Fdhhj3jLGNKr2U4p4MSVYIu4zBziIY8heZWw1z20CbrXWNj7iI9haO7uKdX4CTAJaWmsjgDdwJGgiIlI3zcEx9O5mYBaAtXYvsKX82BZgI472KPqItqORtbZbBfVtBeIPvTDGmCNfV8FxbZC19iVrbW8cQ9c7An+pRn0iXk8JloibWGv3AI8CrxpjLjTGhBhj/I0xZxtj/luFKnKAMuDIPazeAP5qjOkGjoU0jDGXViOscCDXWltojOkLXFmNa0VExMuUDwdfCDyAY2jgITPLj/1ePiTvZ+A5Y0wjY4yPMaadMaaiIeLfAz3K2y0/4E6gWTVC2s4R7ZYxpk/56Al/HPOAC3G0bSL1hhIsETey1j6Ho4F7BEfCtAm4C/i6CtfuB/4FzCof0tHfWvsV8DQwvnzlwSXA2dUI6Q7gCWNMPo7k77NqXCsiIt7pNxzD/Y7cAHhG+bFDK9JeCwQAy4DdOBayiDu2ImvtTuBSHItX7MLR67QQRw9YVfwPuKR8hcGXgEbA2PJ7biiv85lqPJuI1zOOobQiIiIiIidmjPHBMQfrKmvtdE/HI+KN1IMlIiIiIpUyxpxljGlsjAnEsTWIAeZ6OCwRr6UES0REREROZACOzYl3AucDF1ZxKxGRBklDBEVERERERJxEPVgiIiIiIiJOcqINT71SdHS0TUhI8HQYIiLipVJTU3daa2NqW4/aGxEROZHK2ps6l2AlJCSwcOFCT4chIiJeyhizwRn1qL0REZETqay90RBBERERERERJ1GCJSIiIiIi4iRKsERERERERJykzs3BEhHxFsXFxWRnZ1NYWOjpUBqkoKAg4uPj8ff393QoIiIuo7bG86rb3ijBEhGpoezsbMLDw0lISMAY4+lwGhRrLbt27SI7O5s2bdp4OhwREZdRW+NZNWlvNERQRKSGCgsLiYqKUoPnAcYYoqKi9I6uiNR7ams8qybtjRIsEZFaUIPnOfrai0hDof/vPKu6X38lWCIiIiIiIk7i0jlYxpgRwP8AX+Bta+1Tx5y/DngG2Fx+6BVr7duujElEpCH7+uuv6dixI127dvV0KCIiUgMJD33v1PqynjrXqfWB2hqX9WAZY3yBV4Gzga7AFcaYir7KE6y1yeUfSq5ERFzo66+/ZtmyZZ4Oo8p27Njh6RBERKSaGnpb48ohgn2BNdbaddbaImA8cIEL7yci0uBceOGF9O7dm27duvHWW28dPh4WFnb484kTJ3Ldddcxe/ZsJk2axF/+8heSk5NZu3YtaWlp9O/fn8TERC666CJ2794NwGmnncaDDz5I37596dixIzNmzAAck62vv/56evToQc+ePZk+fToA48aN48ILL+SMM84gISGBV155heeff56ePXvSv39/cnNzWbt2Lb169Toc1+rVq496fazff/+dO+64w6lfLxERqT61NdXjyiGCLYBNR7zOBvpVUO5iY8wpwCrgfmvtpgrKiIh4tafnP82K3BVOrbNzZGce7PvgCcu8++67REZGcuDAAfr06cPFF19MVFRUhWUHDhzIyJEjOe+887jkkksASExM5OWXX+bUU0/l0Ucf5fHHH+fFF18EoKSkhPnz5zN58mQef/xxpkyZwquvvooxhszMTFasWMGZZ57JqlWrAFiyZAmLFy+msLCQ9u3b8/TTT7N48WLuv/9+PvjgA+677z4iIiJIS0sjOTmZ9957j+uvv77SZ3v88ceZPn06mZmZ9OjRowZfQRERcQa1NdXj6X2wvgU+tdYeNMbcCrwPDDu2kDHmFuAWgFatWrk3QhERL/bSSy/x1VdfAbBp0yZWr15daaN3rD179pCXl8epp54KwJgxY7j00ksPnx81ahQAvXv3JisrC4CZM2dy9913A9C5c2dat259uNEbOnQo4eHhhIeHExERwfnnnw9Ajx49yMjIAOCmm27ivffe4/nnn2fChAnMnz+/wthmzJjBtGnTAEfjN3HixCp/TWpD7Y33cfZ8k7rKFfNkRKpKbU31uDLB2gy0POJ1PH8sZgGAtXbXES/fBv5bUUXW2reAtwBSUlKsc8MUEam9k/U0ucKvv/7KlClTmDNnDiEhIZx22mmH9+k4cknZmu4VFRgYCICvry8lJSVVLg/g4+Nz+LWPj8/h6y+++GIef/xxhg0bRu/evSttoB9//PHDn3/55ZcsWbKE7t271+g5qkPtjYjI0dTWVJ8r52AtADoYY9oYYwKA0cCkIwsYY+KOeDkSWO7CeERE6pU9e/bQpEkTQkJCWLFiBXPnzj18LjY2luXLl1NWVnb4XUeA8PBw8vPzAYiIiKBJkyaHx7x/+OGHh99hrMyQIUP4+OOPAVi1ahUbN26kU6dOVY45KCiIs846i9tvv73SIRszZ85k6tSph19ba49qBEVExH3U1lSfy3qwrLUlxpi7gJ9wLNP+rrV2qTHmCWChtXYScI8xZiRQAuQC17kqHhGR+mbEiBG88cYbdOnShU6dOtG/f//D55566inOO+88YmJiSElJYd++fQCMHj2am2++mZdeeomJEyfy/vvvc9ttt7F//37atm3Le++9d8J73nHHHdx+++306NEDPz8/xo0bd9S7iVVx1VVX8dVXX3HmmWdWeL6iBu6LL75wWy+WiIg3c/dwUbU11WesrVsjIFJSUuzChQs9HYaICMuXL6dLly6eDqPOefbZZ9mzZw9PPvnkcedmzZrF4MGDK7zu0ksv5bPPPjvqWEXfA2NMqrU2pbZxqr3xDpqD5aA5WA2X2pqacWZbA9Vrbzy9yIWIiDQgF110EWvXrj08qfhYLVq0ODyM5Fg+Pq4c1S4iIvWFp9saJVgiIuI2R47Rr0hCQgIJCQnuCUZEROolT7c1ejtQRERERETESZRgiYiIiIiIOIkSLBERERERESdRgiUiIiIiIuIkWuRCRESO8vnnn/Poo4/SrFkzpk+fXqVrsrKymD17NldeeaWLoxMRaeAei3ByfXucW18V1ee2Rj1YIiJylHfeeYexY8dWucErKSkhKyuLTz755KRld+zYUdvwRESkHqjPbY0SLBGROuyDDz4gMTGRpKQkrrnmGsDxDt+wYcNITEzk9NNPZ+PGjQBcd9113H777fTv35+2bdvy66+/csMNN9ClSxeuu+46AJ544glmzpzJjTfeyF/+8hcKCwu5/vrr6dGjBz179jzcEI4bN46RI0cybNgwTj/9dB566CFmzJhBcnIyL7zwQqXxXnnllWRkZLj2iyIiIk6ltqZ6NERQRMQZfngItmU6t85mPeDspyo9vXTpUv75z38ye/ZsoqOjyc3NBeDuu+9mzJgxjBkzhnfffZd77rmHr7/+GoDdu3czZ84cJk2axMiRI5k1axZvv/02ffr0IS0tjUcffZRp06bx7LPPkpKSwnPPPYcxhszMTFasWMGZZ57JqlWrAFi0aBEZGRlERkby66+/8uyzz/Ldd99VGu+MGTOYOnUqTzzxBBMnTnTe10lERFxGbU31qQdLRKSOmjZtGpdeeinR0dEAREZGAjBnzpzD49OvueYaZs6cefia888/H2MMPXr0IDY2lh49euDj40O3bt3Iyso67h4zZ87k6quvBqBz5860bt36cKN3xhlnHL5nVTz22GMAfPnll2RmOjkZFRERl1BbU33qwRKpg/YX72fprqVs2beFMltGTEgM3aO60ziosadDa7hO0NPkTQIDAwHw8fE5/Pmh1yUlJdWqKzQ0tMplZ86cybRp0wCw1vLEE0/w+eefV+t+IiJSNzT0tkY9WCJ1yIrcFfx91t8ZMn4IN/x0A4/MeoRHZz/K7VNu55QJp3DjTzfy26bfsNZ6OlRxg2HDhvH555+za9cugMPDNgYOHMj48eMB+PjjjxkyZEiN7zFkyBA+/vhjAFatWsXGjRvp1KnTceXCw8PJz8+vtJ5D7yge8sUXX7BkyZIaxyUiIu6htqb61IMlUgfsL97PC6kvMH7leIL9grmw/YWc1vI0Wjdqja+PL1v2bWHBtgV8s+Yb7pp2F0NaDOGxgY/RNKSpp0MXF+rWrRsPP/wwp556Kr6+vvTs2ZNx48bx8ssvc/311/PMM88QExPDe++9V+N73HHHHdx+++306NEDPz8/xo0bd9S7kYckJibi6+tLUlIS1113Hffff//hc7NmzWLq1KlHlT/0zuJnn31W49hERBokNy+rrram+kxde6c7JSXFLly40NNhiLjN+j3ruWvqXWzK38RVXa7i9uTbaRTQqMKyxWXFTFgxgf8t+h8BvgE8c+ozDGw+0M0RNxzLly+nS5cung7D651xxhlMmTLluOOHJjR369atxnVX9D0wxqRaa1NqXGk5tTfeIeGh7z0dglfIeupcT4cgHqK2pmpc2dZA9dob9WCJeLHlu5Zz25TbAHjnrHfo06zPCcv7+/hzdderGdxiMA/89gB3Tr2T/57yX85ofYY7whU5TllZGY899hj/+Mc/KjwfEeHkDTNFRKTB8ba2RgmWiJdambuSG366gbCAMMaeMZaEiIQqX5sQkcB7Z73HnVPv5M+//ZnnTn2O4a2Huy5YkUr4+PgwaNAgT4chIiL1mLe1NVrkQsQL7Tywk7un3U2IXwgfjPigWsnVIRGBEbx1xlt0j+7O32b+jWW7ljk/UBERERE5ihIsES9TXFrMfdPvY3fhbl4a9hJxYXE1rivEP4T/Df0fEYER3D3tbnL25zgxUhERERE5lhIsES/zevrrpOek8+TgJ+kWXbsJmQDRwdG8MuwV9h7cy6OzH9US7iIiIiIupARLxIuk56TzzpJ3uLD9hYxIGOG0ejtFduK+3vcxc/NMvlj9hdPqFREREZGjaZELES9RWFLIIzMfITYklgf7POj0+q/ofAXTNk7jmQXP0D+uP/Hh8U6/h3ivRx99lFNOOYXhw7XYiYjUTT3e7+HpEDzixa4vUraz7PDr0d+Pdmr9mWMynVaX2hoH9WCJeIlxS8eRtTeLxwc+TlhAmNPr9zE+PDnoSSyWZxc+6/T6xXuVlpbyxBNPOLXBy8nRfD4REfmD2po/KMES8QLbC7bz7pJ3OaP1GQxoPsBl92ke1pybetzE1I1Tmb91vsvuI+6RlZVF586dueqqq+jSpQuXXHIJ+/fvByAhIYEHH3yQXr168fnnn3PdddcxceJEABYsWMDAgQNJSkqib9++5OfnU1payl/+8hf69OlDYmIib7755gnv/eCDD/Ltt9+6/BlFRMSz1NZUn4YIiniBFxe9SGlZKQ/0fsDl97q267V8seoLnl7wNJ+d9xm+Pr4uv2dD8Pi3S1m2Za9T6+zavBH/OP/EC52sXLmSd955h0GDBnHDDTfw2muv8ec//xmAqKgoFi1aBMCPP/4IQFFREZdffjkTJkygT58+7N27l+DgYN555x0iIiJYsGABBw8eZNCgQZx55pm0adPmuHuuX7+eDz/8kMzMTM4//3ynPrOIiHgftTXVox4sEQ9btmsZ3637jjHdxrhlXlSQXxB/SvkTq3avYtLaSS6/n7hWy5YtD2+uePXVVzNz5szD5y6//PLjyq9cuZK4uDj69OkDQKNGjfDz8+Pnn3/mgw8+IDk5mX79+rFr1y5Wr15d4T3/+c9/UlJSwsKFC/nuu+9c8FQiIuJN1NZUj3qwRDzs9fTXCQ8I5/ru17vtnme0PoNuUd14K+Mtzmt3Hv4+/m67d311sp4mVzHGVPo6NDS0yvVYa3n55Zc566yzTlhu/fr1fPDBB4dfP/HEE5x33nlVvo+IiNQ9amuqRz1YIh60fNdyft30K9d0vYbwgHC33dcYw21Jt5G9L5vJ6ya77b7ifBs3bmTOnDkAfPLJJwwePPiE5Tt16sTWrVtZsGABAPn5+ZSUlHDWWWfx+uuvU1xcDMCqVasoKCg47vp//etflJSUHH69YMECvv/+e2c9joiIeCG1NdWjHiwRD3oz403C/cO5qstVbr/3qfGn0iWyC29lvMW5bc/Fz0f/HdRFnTp14tVXX+WGG26ga9eu3H777ScsHxAQwIQJE7j77rs5cOAAwcHBTJkyhZtuuomsrCx69eqFtZaYmBi+/vrro67Nyso66h3FQx5//HHOPfdcZz6WiIhUwpnLqleV2prq0V9UIh6yZvcapm6cym1Jt9EooJHb72+M4dakW7lv+n38lPUT57atG/9pydH8/Pz46KOPjjuelZV11Otx48Yd/rxPnz7MnTv3uGv+/e9/8+9//7vSe/3rX/86/K7jkRYsWMDkyZM555xzqh64iIjUGWprqkcJloiHfLT8IwJ9A7my85Uei2Foy6EkNErgo2UfcU6bc44bYy1ypJtvvpkxY8ZUeC4uLs7N0YiISH1UH9oaJVgiHpBXmMd3677jvLbn0SSoicfi8DE+XNXlKv4171+k56ST3DTZY7FI9SUkJLBkyRK33a9v375uu5eIiHgHtTXVp0UuRDxg4uqJHCw9yJVdPNd7dcjIdiMJ9w/no+XHd/3LyVlrPR1Cg6WvvYg0BBar/+88rLpffyVYIm5WXFbM+BXj6RfXj45NOno6HEL8QxjVYRRTNkxhW8E2T4dTpwQFBbFr1y41fB5grWXXrl0EBQV5OhQREZfadGATRflFams8pCbtjYYIirjZ79m/s33/dv7W72+eDuWwK7pcwQfLPuCL1V9wZ/Kdng6nzoiPjyc7O5ucnBxPh9IgBQUFER/v+s25RUQ8aezGsdzMzbQMbonB4JOj/hF3q257owRLxM2+Wv0VMcExnBJ/iqdDOaxFWAv6x/Xn6zVfc1vibfj6+Ho6pDrB39+fNm3aeDoMERGpx/JL83l+/fOHX3timXapHqXAIm60Y/8OZmyewch2I71u36lRHUaxrWAb87bO83QoIiIiInWWEiwRN5q0dhJltoyLOlzk6VCOM6zVMCICI/hyzZeeDkVERESkzlKCJeIm1lq+Wv0VvWN707pRa0+Hc5wA3wDOb3s+0zZOI68wz9PhiIiIiNRJSrBE3CQtJ42N+Ru5qL339V4dcmH7CykuK2by+smeDkVERESkTlKCJeIm36/7nkDfQIa3Hu7pUCrVKbITHZp04If1P3g6FBEREZE6SQmWiBuUlJXwy4ZfODX+VEL9Qz0dzgmd0+Yc0nLS2LJvi6dDEREREalzlGCJuMG8rfPILczlnDbneDqUkxqRMAJAvVgiIiIiNaAES8QNJq+fTJh/GIPjB3s6lJOKD48nMSZR87BEREREasClCZYxZoQxZqUxZo0x5qETlLvYGGONMSmujEfEEw6WHmTqxqkMbz2cQN9AT4dTJee0OYdVu1exNm+tp0MRERERqVNclmAZY3yBV4Gzga7AFcaYrhWUCwfuBbS7qdRLszfPpqC44PDQu7rgrISzMBh+zvrZ06GIiIiI1Cmu7MHqC6yx1q6z1hYB44ELKij3JPA0UOjCWEQ8ZsrGKYQHhNO3WV9Ph1Jl0cHRJDdNZurGqZ4ORURERKROcWWC1QLYdMTr7PJjhxljegEtrbXfn6giY8wtxpiFxpiFOTk5zo9UxEWKy4r5Lfs3To0/FX9ff0+HUy2ntzqdlbtXsil/08kLi9QTam9ERKS2PLbIhTHGB3ge+NPJylpr37LWplhrU2JiYlwfnIiTpG5PZc/BPQxv5b17X1Xm9FanAzBt4zQPRyLiPmpvRESktlyZYG0GWh7xOr782CHhQHfgV2NMFtAfmKSFLqQ+mbphKkG+QQxsMdDToVRbfHg8nSM7M2XDFE+HIiIiIlJnuDLBWgB0MMa0McYEAKOBSYdOWmv3WGujrbUJ1toEYC4w0lq70IUxibhNmS1j2qZpDGoxiGC/YE+HUyPDWg0jPSednP0aKiUiIiJSFS5LsKy1JcBdwE/AcuAza+1SY8wTxpiRrrqviLdYvms5O/bvODzUri46vdXpWCy/Zv/q6VBERERE6gQ/V1ZurZ0MTD7m2KOVlD3NlbGIuNvvm3/HYBjcwvs3F65Mh8YdiAuNY2b2TC7teKmnwxERERHxeh5b5EKkvpuZPZMeMT1oEtTE06HUmDGGIS2GMHfrXIpKizwdjoiIiIjXU4Il4gK5hblk7sys071XhwxuMZj9JftZtGORp0MRERER8XpKsERcYNbmWVgsp7Q4xdOh1Fq/uH74+/gzM3ump0MRERER8XpKsERcYObmmUQGRdIlqounQ6m1EP8QUmJTmLF5hqdDEREREfF6SrBEnKy0rJRZW2YxuMVgfEz9+BUbEj+EdXvWsXnf5pMXFhEREWnA6sdffyJeJHNnJnsO7mFI/BBPh+I0Q1o4nkXDBEVEREROTAmWiJPN2DwDH+PDgLgBng7FaVo3ak18WLyGCYqIiIichBIsESebkT2D5JhkIgIjPB2K0xhjGBI/hHlb53Gw9KCnwxERERHxWkqwRJxo54GdLM9dXq+GBx4ypMUQCksLWbhtoadDEREREfFaSrBEnGju1rkADGhef4YHHpLSLAV/H//DzygiIiIix1OCJeJE87bOo1FAIzo36ezpUJwu2C+YpJgk5m2d5+lQRERERLyWEiwRJ7HWMm/rPPo264uvj6+nw3GJfnH9WJG7grzCPE+HIiIiIuKVlGCJOEl2fjZbC7bSL66fe25YWgKFe2HfDihxz8IT/eP6Y7Es2L7ALfcTERERqWv8PB2ASH0xd5tjbpJLEixrYctiWDkZtqbDtkzI33p0mdAYaJIArQdBm1Mc//oHOTWMbtHdCPELYd7WeZzR+gyn1i0iIiJSHyjBEnGSeVvn0TSkKQmNEpxX6YHdMO8tSPsY8jaA8YWYztDmVIhsCwEh4BvoKLc3G3JWwZxXYNaLEBwJPa+ClBscZZ3A38eflGYpmoclIiIiUgklWCJOUGbLmL91PkPih2CMqX2FhXth5gswfywU5UPboXDKX6DzuRASeeJrD+6DDbNg8Ucw5zWY/Yoj0Rr2dwhvVuvQ+jXrx+/Zv7OtYBvNQmtfn4iIiEh9ogRLxAlW717N7oO7nTM8cOUP8N0DjiGA3S6EIX+GZt2rfn1gGHQ8y/GxdyvMfhnmvwVLvoLTHoQBd4NPzadfHnrGeVvncUH7C2pcj4iIiEh9pEUuRJzg0N5QfZv1rXklB/fBFzfDp6MhuAncNBUuHVe95OpYjeJgxL/hznnQ9lT45VH48ALYu6XGVXZo0oEmgU00TFBERESkAkqwRJxg3tZ5JDRKqPmQudx18M4ZsGQinPZXuOVXiO/tvACj2sHoT2DkK5C9EF4fBOt+q1FVPsaHvnF9mbd1HtZa58UoIiIiUg8owRKppeKyYlK3p9Z8eGDWLHhrqKNX6aqJcNpD4Bfg3CABjIFe18Ctv0NYLHx0MWR8XqOq+sX1Y8eBHazfu97JQYqIiIjUbUqwRGpp2a5l7C/ZX7PhgWunORKdsFi4ZTq0P935AR4rugPc8CO07Adf3gSz/lftKvo36w/Agq3aD0tERETkSEqwRGopdXsqAL1jqzmkb+WP8MloiGoP10922lLqVRLcGK75ErqNcszLmv1KtS6PD4+naXBTUnekuiY+ERERkTpKqwiK1FLq9lTaRLQhKjiq6het/x0mXA2x3eCar06+9Lor+AXCqLFgS+HnhyEgFFKur9Klxhh6x/YmdXsq1lrnLE0vIiIiUg+oB0ukFkrLSlm8fXH1eq+2L4PxVzt6rK792jPJ1SG+fjDqbehwJnx3Pyz5ssqX9o7tzY79O8jel+3CAEVERETqFiVYIrWwOm81+cX5VU+w9m6Fjy8F/2C4eqJjOXZP8wuAyz6AVv3h6ztgy+IqXXbomQ8NkRQRERERJVgitXIouUiJTTl54ZIimHAVFObBVZ9D41auDa46/IPhsg8hNBrGXwX52096SdvGbWkc2FgJloiIiMgRlGCJ1ELq9lRahLWo2v5XPz8Cm1PhwtchLtH1wVVXWIxjr6wDux3zw0qKTljcx/jQq2kvJVgiIiIiR1CCJVJD1lpSt6dWbXhg5kSY/yYMuAu6jnR9cDUVlwgXvArZ8+HXf5+0eO/Y3mzK38T2gpP3eImIiIg0BEqwRGpo/d715BbmnjzB2rUWJt3j2Hdq+GNuia1Wuo+CXmNg5ouw7rcTFu3dzPHsi3YsckNgIiIiIt5PCZZIDVVp/6uyUsfCET5+cMm74OvvpuhqacR/HPtzfXUr7M+ttFinJp0I9Q/VMEERERGRckqwRGoodXsq0cHRtAo/wWIVc1+DTXPh7KchIt59wdVWQChc/DYU7ITvH6i0mJ+PH8lNk5VgiYiIiJRTgiVSA9ZaFm5bSO/Y3pVvspuzEqY+CZ3OgaTR7g3QGZonw2kPwtKvYMXkSoulxKawJm8Nuwt3uy82ERERES+lBEukBrYUbGH7/u30atqr4gJlZfDNXRAQAue9CJUlYd5u4L3QtCt8/yco3FthkUNDJDUPS0REREQJlkiNpO9IB6Bn054VF0j7yLES31n/hvBYN0bmZH4BMPJlyN8KUx+vsEjXqK74+/iTtiPNvbGJiIiIeCElWCI1kJ6TTrBfMB2adDj+5P5c+OUf0GoAJF3h/uCcLT4F+t0KC96G7IXHnQ70DaRbVDclWCIiIiIowRKpkYycDLpFdcPPx+/4k1Mfh8I9cO5zdXdo4LGGPQJhsfDDg47hj8dIbprM0l1LKSo98ebEIiIiIvWdEiyRaiosKWRF7gqSYpKOP7k5FVLfh363QWw39wfnKoHhcPo/YPNCyPzsuNPJMckUlxWzbNcyDwQnIiIi4j2UYIlU0/Lc5ZTYEhJjEo8+YS38/HcIjYbTHvJMcK6UdAU07wlTHoOD+44+1dSRbGqYoIiIiDR0SrBEqunQAhfH9WCt/AE2zHIkV0GNPBCZi/n4wNn/dSx4MfOFo05FB0cTHxZPWk6aZ2ITERER8RJKsESqKWNnBvFh8UQFR/1xsLQEpvwDotpDrzGeC87VWvaF7pfAnFchf9tRp3o27UnajjSstR4KTkRERMTzlGCJVIO1lvQd6ccPD1z8AexcBcMfB19/zwTnLsMehrJi+P2Zow4nN01mV+EusvdleygwEREREc9TgiVSDdv3b2fHgR1HDw8s2g+/PuVYlr3zuZ4Lzl0i20KvayF1HOSuP3z40NdE87BERESkIVOCJVINh+YYHZVgLXwX9m2H0x+tP8uyn8wp/wc+fo7Eslz7xu0J8w9TgiUiIiINmksTLGPMCGPMSmPMGmPMccuqGWNuM8ZkGmPSjDEzjTFdXRmPSG1l5GQQ6BtIx8iOjgNFBTDrRWhzKrQe6NHY3KpRHPS9BTImwHbH0uy+Pr4kxiRqoQsRERFp0FyWYBljfIFXgbOBrsAVFSRQn1hre1hrk4H/As+7Kh4RZ0jPSadbVDf8fcrnWS14BwpyYOjfPBuYJwy+HwJCYcazhw8lxySzevdq9hXtO8GFIiIiIvWXK3uw+gJrrLXrrLVFwHjggiMLWGv3HvEyFNDyY+K1ikqLWL5r+R/DA4sKYNb/oO1QaNXfs8F5Qkgk9LkJlnwJO1cDjv2wLJaMnRkeDk5ERETEM1yZYLUANh3xOrv82FGMMXcaY9bi6MG6p6KKjDG3GGMWGmMW5uTkuCRYkZNZnruc4rLiP1YQXPAO7N/ZMHuvDhlwF/gFHd4XKzE6EYPRPCyps9TeiIhIbXl8kQtr7avW2nbAg8AjlZR5y1qbYq1NiYmJcW+AIuUObTCcGJMIJQcde0G1OdWxN1RDFRYDKddD+njYvYGwgDA6NOmgBEvqLLU3IiJSW65MsDYDLY94HV9+rDLjgQtdGI9IrWTszCAuNI6mIU0dizvs2waD7/N0WJ438G7w8XUs9oFjw+GMnRmUlpV6Ni4RERERD3BlgrUA6GCMaWOMCQBGA5OOLGCM6XDEy3OB1S6MR6RW0nPSHfOvykodc6/ikhzzrxq6Rs0h+SpY/BHkbycpJomC4gLW5K3xdGQiIiIiblelBMsY86Ux5lxjTJUTMmttCXAX8BOwHPjMWrvUGPOEMWZkebG7jDFLjTFpwAPAmOqFL+Ie2wu2s61gmyPBWvEd7FrjWEWvoex7dTID74bSYlgwluSmyYAjIRURERFpaKqaML0GXAmsNsY8ZYzpVJWLrLWTrbUdrbXtrLX/Kj/2qLV2Uvnn91pru1lrk621Q621S2v0FCIudmhVvMToHjDzRYhsC11GnviihiSqHXQ+Fxa8TXxAEyKDIpVgiYiISINUpQTLWjvFWnsV0AvIAqYYY2YbY643xvi7MkARb5CRk0GATwBdC/bClkWO1fN8fD0dlncZeA8c2I1J/5TEmEQycrRUu4iIiDQ8VR7yZ4yJAq4DbgIWA//DkXD94pLIRLxIek46XaK64LdgLAQ1hqQrPB2S92nVD+L7wJxXSI7uQdbeLPIK8zwdlYiIiIhbVXUO1lfADCAEON9aO9JaO8FaezcQ5soARTytuLSYZbuWMTgsAZZ/B73HQECIp8PyTgPvht1ZnLovH0AbDouIiEiDU9UerLHW2q7W2v9Ya7cCGGMCAay1KS6LTsQLrNy9koOlBzlzx0bAQp+bPB2S9+p8HjRuRZsVv+BrfDUPS0RERBqcqiZY/6zg2BxnBiLirdJz0gkqKyNhza+HEwiphI8v9LkJ341zOD0oTgmWiIiINDgnTLCMMc2MMb2BYGNMT2NMr/KP03AMFxSp99Jz0hld5ItP4R7od5unw/F+Pa8BvyCuzC8gMydTGw6LiIhIg+J3kvNn4VjYIh54/ojj+cDfXBSTiFfJ2JHOe3v2QLMe0Hqgp8PxfiGR0P0SkpZ8jk+LGNbuWUvHJh09HZWIiIiIW5wwwbLWvg+8b4y52Fr7hZtiEvEaOw/sJH7nOuL258EZ/9LGwlXV9yb80j5iZH4B6TnpSrBERESkwTjZEMGryz9NMMY8cOyHG+IT8aj0nHSu2ptPSVAEdL/E0+HUHc17YlukcNW+/WRsT/N0NCIiIiJuc7JFLkLL/w0Dwiv4EKnX1m2cwSn7D0Dv68A/yNPh1Cmm7y20KjqIyfrN06GIiIiIuM3Jhgi+Wf7v4+4JR8S7xCz/AQP4ptzg6VDqnm4XcmDy/QzduoY9B/cQERjh6YhEREREXK6qGw3/1xjTyBjjb4yZaozJOWL4oEi9VFJSyIBta8iKbgtNEjwdTt3jF8juriM5Zf8BVq77xdPRiIiIiLhFVffBOtNauxc4D8gC2gN/cVVQIt5gS9r7xJaWkNf9Qk+HUmc1GeSYqmkWf+ThSERERETco6oJ1qGhhOcCn1tr97goHhGv4bvoQ3J8fWjW8zpPh1JnBUd3JK1RNO2z5kJpiafDEREREXG5qiZY3xljVgC9ganGmBig0HVhiXjYnmzitizhpyYxxDVq5elo6rS1bQfRpOgAZWt+9nQoIiIiIi53so2GAbDWPmSM+S+wx1pbaowpAC5wbWgiHrToQ8Cyru0QjAf3viosLmVtzj5Wb9/Hlj0HyMk/SE7+QXbvL6KopIziUktpmcXXxxAe5Ed4kB+Ngvxp3jiYVpEhtIwMoU10KJGhAR57hqCuF7Az81uC5r1BWKdzPBaHiIiIiDtUKcEq1xnHflhHXvOBk+MR8bzSEsoWjWN2cBDxrQa57bbWWjbm7mfuul3MW5dL2qY8snYVUGb/KBMW6EfT8ECahAYQ4OtDkL/B39eH4tIy8gtL2LqnkD0HisnJP3hU3fFNgklq2Zjk+Mb0bxtFt+aN8PFxT+KYGNubb8LCuH79DMjfBuHN3HJfEREREU+oUoJljPkQaAekAaXlhy1KsKQ+WvMLPvnb+LxpNNfGJLn0VqVlloVZufywZBs/L93Glj2OkbdRoQH0bt2E85Ka0zE2jI6x4cQ3CSYkoGrviRQWl5K9+wCbcvezans+Gdl7SNuYx/cZWwGIDgvk1I4xDOvclGGdmxIc4OuyZ2zdqDW/RDXjxj2rIO1jGPInl91LRERExNOq2oOVAnS11tqTlhSp61LfpyAwjNmh4TwV1dUlt1izI5+P5m7ku4yt7Nx3kAA/H07tGMPtQ9szoG0k7WLCajU0Mcjfl/ZNw2jfNIyhnZsePr4jv5CZq3fy68ocpizfzheLsgkP9OOcHnFc3DuePglNnD4k0hhDZPM+LNm+g+6LPoRB94NPVad/ioiIiNQtVU2wlgDNgK0ujEXE8/K3w+qf+S2uA22jEgj2C3Za1SWlZfy4dBsfztnAvPW5+PsahneJ5ZwecQzt3JSwwOqM2K2ZpuFBjOoVz6he8ZSWWeat38WXizbzbcYWJizcRNuYUG4a3JZRvVoQ5O+8Xq2kmCQ+CvmRp3LWQ9YMaHuq0+oWERER8SZV/YsuGlhmjJkPHJ7cYa0d6ZKoRDwlYzzYUt7zP0hPJw0PLC4t48tF2bw6fS0bc/cT3ySY/xvRictSWhIdFuiUe9SEr49hYLtoBraL5okLuvFD5jbGzc7ib19l8tzPK7lmQGuuH9iGiBD/Wt8rqWkSY0OCKQkIw2/RB0qwREREpN6qaoL1mCuDEPEK1sLijznQrAcrfPYwJiaxVtWVllkmpm7i5WlryN59gB4tInjrmt4M7xLrtgUmqiokwI+Le8czqlcL5q3PZezv63hxymrenbmeO4a257qBCbXq0eoe1Z0iH1+Wt+hBj+WTYH8uhEQ68QlEREREvENVl2n/zRjTGuhgrZ1ijAkBXDcrXsQTNqfCzpUs7XMN7PyNpFr0YM1dt4vHv13G8q17SYqP4IkLujG0U1OPLvleFcYY+reNon/bKJZv3ct/f1zBUz+sYNysLB44oyOX9I6vUXIYFhBG+ybt+abUnx6lRbDkC+h7swueQERERMSzqjTT3BhzMzAReLP8UAvgaxfFJOIZiz8Cv2AmhwYTGRRJfFh8tavYkneAOz9exOi35rL3QDGvXtmLr+8cxLDOsV6fXB2rS1wj3ru+LxNu6U9c4yD+74sMLn1zDiu35deovqSYJCYf2ISN7QZpnzg5WhERERHvUNWlvO4EBgF7Aay1q4GmJ7xCpC4pPgBLvoSuI1mwewWJMYnVSoistXw6fyNnvvA7U1ds5/7hHZnywKmcmxhX5xKrY/VrG8WXtw/kmUsSWZezj3NfmsFTP6zgQFHpyS8+QmJ0IvnF+eR2Ogu2LIKclS6KWERERMRzqppgHbTWFh16Ub7ZsJZsl/pj+XdwcA/7ul1I1t6sag0P3Jx3gGvfnc9fv8ykR4sIfrn/VO4d3sGle0u5mzGGS1NaMvVPp3Fhzxa88dtazn15Bks276lyHUlNHV/TedGtwfiqF0tERETqpaomWL8ZY/4GBBtjzgA+B751XVgibpb2MTRuxeKQUIAqJ1jfZWxhxAu/k7phN09e2J2Pb+pHy8gQV0bqUZGhATx7aRIf39SPgoMlXPTaLN78bS1lZSd/vyWhUQKNAhoxf18WtB8OGROgrHq9YCIiIiLerqoJ1kNADpAJ3ApMBh5xVVAibpW3Cdb9CklXkr4zEx/jQ7eobie85GBJKY9+s4S7PllMh9gwfrrvFK7p39rrVgd0lUHto/nx3lMY3iWW//ywgqvfmUdO/sETXuNjfOgR04P0nHRIvgLytzq+7iIiIiL1SJUSLGttGY5FLe6w1l5irR1rrdUQQakf0scDFpKvICMng45NOhLiX3kv1MZd+7nk9Tl8MGcDNw9pw4RbB9TrXqvKNAkN4LWrevH0xT1YtHE35788k7RNeSe8JikmibV5a8lvMxiCIiD9U/cEKyIiIuImJ0ywjMNjxpidwEpgpTEmxxjzqHvCE3Exax2bC7ceTFnjVmTuzDzh8MA5a3dx/isz2bCrgLHXpvDwuV3x961qR3D9Y4zh8j6t+OL2gfj5Gi57Yw6fLdhUafmkmCQslsy81dD9Ysfct8K9boxYRERExLVO9pfh/ThWD+xjrY201kYC/YBBxpj7XR6diKttXgS71kDS5azLW8e+4n0kVrLB8IQFG7nmnXnEhAfy7d2DOaNrrJuD9V7dmkfw7V2D6dsmkv/7IoN/fLOE0grmZfWI7oHBOIYJJl0JJQdg2dfuD1hERETERU6WYF0DXGGtXX/ogLV2HXA1cK0rAxNxi4wJ4BsIXS9w/NHP8QtclJZZ/jN5OQ9+kcmAdlF8ecdAWkeFeiJar9YkNIBx1/fhpsFteH/OBm77KPW4pdzDA8Jp17gdGTkZEJ8CUe0hTcMERUREpP44WYLlb63deexBa20O4O+akETcpLQYlnwBnc6GoAgydmbQOLAxrcJbHS5SVFLGveMX8+bv67h2QGveu64PjYL0o18ZP18fHjmvK4+P7MaU5du58u255BYUHVUmKSaJjJwMyrCQdAVsnA256yupUURERKRuOVmCVVTDcyLeb+002L8TkkYDkL4j/agNhvcXlXDzBwv5LmMrfz27M09c0B2/BjzfqjrGDEzg9at6s2zLXi5+fTabcvcfPpcYk8jeor1k7c0q/9qb8oVGREREROq+k/21mGSM2VvBRz7Qwx0BirhM+ngIjoR2p7O3aC9r96wlMdox/2rP/mKueWc+M1bn8PTFPbj11HYeDrbuGdG9GZ/c3I/cgiIuf3MO63cWAH8MwczIyYCIeGhzimM1wbIyT4YrIiIi4hQnTLCstb7W2kYVfIRbazVOSuquwr2wcjJ0HwV+ASzJWQJAUtMkR0Lw1hwys/fw6pW9uLxPq5NUJpXp3TqST2/uT2FJGZe/OYc1O/JpE9GGcP/ww3PeSL4S8jbAxjmeDVZERETECTTeSRqm5ZOgpBASy4cH5qRjMMQHd+Kqt+exfmcBb49J4ewecR4OtO7r2rwR42/pT5mFy9+cy8pt+/7YcBigy/ngH+pYLl9ERESkjlOCJQ1TxgSIbOtYyQ5I35lOQlhXbv1gCWtz9jH22hRO6Rjj4SDrj46x4Uy4tT9+voYrx86lRUAKa3avoaC4AAJCoetIWPoNFB/wdKgiIiIitaIESxqePZth/QxIvByMocyWkbZ1FZtXjWL19n28dU1vJVcu0C4mjAm3DMDf14cvf29BaVEkmTszHScTL4eDe2DlD54NUkRERKSWlGBJw5P5OWChx6UALN+5jh3rLiEvP4Q3r+nNaZ2aeja+eiwhOpSPbuoH1pf9G25ixnrH3DfanALhcY6eRREREZE6TAmWNCzWOv6Ij+8LUe0oLi3jzxOWU3agJf+4sCVDOyu5crWOseF8dGN/jA1l3JRG7MgvBB9fSLwM1kyBfTmeDlFERESkxpRgScOyfQnsWAaJl1FWZvnz5+ksz/ahScsfuaZPoqejazC6t4jgzP6r2V/oz/XvLWDfwRLHgiNlJY7Nn0VERETqKCVY0rCkjwcfP2y3UTzx3TK+SdtCs5bzGdiZwxsMi3uc0akdQS0+YvnWvdz+USrF0Z2hWQ+tJigiIiJ1mhIsaTjKSiFzInQ4k7dT9zBudhZX92/OvtAvSY5J9nR0DU5iTCJ+Yau4fEgZM1bv5MEvMrA9RsOWxZCzytPhiYiIiNSISxMsY8wIY8xKY8waY8xDFZx/wBizzBiTYYyZaoxp7cp4pIFb/xvs28aPjUfz7x+Wc06PZpzROx9jILlpsqeja3DaNW5HmH8YIU3SuG94B75ctJnncgeC8VEvloiIiNRZLkuwjDG+wKvA2UBX4ApjTNdjii0GUqy1icBE4L+uikeEjM9I903kvtkBJMU35vnLksnYmY6v8aVbVDdPR9fg+BgfekQ7Nhy+9/QOjO7TkldmbeWzyFsh4zMoK/N0iCIiIiLV5soerL7AGmvtOmttETAeuODIAtba6dba/eUv5wLxLoxHGrKiArKXzOTGovuJDgvk7TEpBPn7kr4jnU6RnQjxD/F0hA1SYkwiq/NWc6DkAE9e2J3B7aN5eOtgFuwOgQ2zPB2eiIiISLW5MsFqAWw64nV2+bHK3AhUuMuoMeYWY8xCY8zCnBwt4SzVV5A5mZv238lBE8i46/sQHRZISVkJGTszSIpJ8nR4DVZSTBJltowlO5fg7+vDq1f2omWTEG4tfoBN87/xdHjSAKm9ERGR2vKKRS6MMVcDKcAzFZ231r5lrU2x1qbExMS4Nzip86y1/OWn7ayy8bx2VR/aNw0HYPVuR8+JFrjwnMQYx9L46TnpAESE+PP2dX0p8QnipvSO7Mvf68nwpAFSeyMiIrXlygRrM9DyiNfx5ceOYowZDjwMjLTWHnRhPNJAvf5zBpP3tuGhDpsZ0umPjYTTctIALXDhSRGBESQ0SiAjJ+PwsbYxYbw+Ipw1Zc24b9yvlJVZD0YoIiIiUj2uTLAWAB2MMW2MMQHAaGDSkQWMMT2BN3EkVztcGIs0UNNX7uCZ6ZsY6TOLm8879ahzaTvSaBrclLjQOA9FJ+AYJpiek461fyRSgwYN5dGwb5my2ZdXp6/xYHQiIiIi1eOyBMtaWwLcBfwELAc+s9YuNcY8YYwZWV7sGSAM+NwYk2aMmVRJdSLVtn5nAfd8upguATt4uuVcTGyXo86n56ST1DRJGwx7WFLTJHYf3M2m/COmbPr4cG2/FlzkO5Pnf1nFryv1/ouIiIjUDS6dg2WtnWyt7WitbWet/Vf5sUettZPKPx9urY211iaXf4w8cY0iVbPvYAm3fLAQP8p4k38RnHzJUedz9uewed9mzb/yAonRR8/DOsQkjebffm/TuVER945PY1Pu/oouFxEREfEqXrHIhYgzlZVZ/vRZGut2FvBK1xW09M2F7hcfVebQH/NJTbWCoKe1b9yeUP/Q4xIsmnYmuHlX3mj0HtZabv0wlcLiUs8EKSIiIlJFSrCk3hk7Yx0/Ld3OX0d0YtDmd6DdMAiPPapM2o40AnwC6BLZpZJaxF18fXzpHt39qIUuDksaTeudv/HiiGiWbd3Lw18tOWquloiIiIi3UYIl9crCrFz++9NKzunRjBvjN8OeTZA4+rhyaTlpdIvuRoBvgAeilGMlRieyavcq9hcfMwyw+yVgfBmWP4l7T+/AF4uy+XjeRs8EKSIiIlIFSrCk3sgtKOKuTxYT3ySYpy5OxGROgIAw6HzuUeWKSotYtmuZ5l95keSmyZTaUpbuWnr0ibAYaH86ZH7OvUPbMbRTDI9/u5T0TXkeiVNERETkZJRgSb1QVma5f0IauQVFvHplLxr5lsCySdD1AggIOars0l1LKS4rJilG86+8RWULXQCQNBr2bsZn40xeuDyZpuFB3PXpIvYWFrs5ShEREZGTU4Il9cLrv63lt1U5/P38rnRvEQErJ8PBvZB4+XFlU7enAtAztqe7w5RKNA5qTOtGrSueh9XpHAhsBOnjaRwSwEtX9GRLXiF//SJT87FERETE6yjBkjpv3rpdPPfzSs5LjOPqfq0cB9PHQ6MWkDDkuPKp21NpG9GWyKBIN0cqJ1LRhsMA+AdD15GwfBIU7ad36yb85axOfJ+5lU/maz6WiIiIeBclWFKn7dx3kLs/XUzrqFD+M6qHY9PgfTtgzVRIvAx8jv4RLy0rJW1HGr1ie3koYqlMUkwSuYW5ZO/LruDkFVC0D1Z8D8AtQ9pySscYHv92Gcu37nVzpCIiIiKVU4IldZa1lj9/ns6eA8W8emUvwoP8HSeWfAG2tMLVA1fnrWZf8T56NVWC5W0OzYlL25F2/MlWAyGiJWSMB8DHx/D8ZUk0Dvbnzk8WUXCwxI2RioiIiFROCZbUWR/M2cCvK3N45NwudG3e6I8T6Z9CXBI07XzcNYfmX6XEprgrTKmi9o3bE+4fzqIdi44/6ePj6JFcOw3ytwEQHRbI/0b3JGtnAX//ZomboxURERGpmBIsqZNWbc/nX5OXM6xzU67u3/qPEztWwNb0CnuvABZtX0RcaBxxYXFuilSqytfHl56xPVm4bWHFBRJHgy2DzImHDw1oF8U9p3fgy0WbmZhawdBCERERETdTgiV1TmFxKfd8uphGQX48fXGiY97VIRnjwfhCj0uOu85aS+r2VM2/8mK9Y3uTtTeLnQd2Hn8ypiM073V4mOAhdw/rQL82kfzjmyVk7SxwU6QiIiIiFVOCJXXOMz+tZMW2fJ65JImY8MA/TpSVQcZnjo1pw5oed93G/I3sKtyl+Vde7NDQzUNDOY+TNBq2ZcL2PzYk9vUxvHB5Mr4+hvsmpFFcWuaOUEVEREQqpARL6pQZq3N4Z+Z6xgxozdDOxyRRWTNg7+YK974Cx/BAcPSSiHfqEtWFYL/gyocJdr8YfPwcy/AfoXnjYP4zKpG0TXm8NHW1GyIVERERqZgSLKkzcguK+NNn6XRoGsZfz+lyfIGMCY4NaTufW+H1qdtTaRLYhLYRbV0cqdSUv48/yTHJpO6opAcrNBranwGZn0NZ6VGnzk2M49Le8bw6fQ3z1+e6IVoRERGR4ynBkjrBWsuDX2SQt7+YF0cnE+Tve3SBov2w7BvHhrT+wRXWkbo9lZ5Nex49Z0u8Tu/Y3qzevZq8wryKCyRdDvlbYf1vx536x8hutIwM4f4Jaew5UOzaQEVEREQqoARL6oTxCzbxy7Lt/N+ITnRrHnF8gRXfOzairWT1wB37d5C9L1sLXNQBKc0c87AqXK4doOPZEBgB6ROOOxUW6Mf/Rvdk295CHvl6CdZaV4YqIiIichwlWOL11uXs44lvlzG4fTQ3DGpTcaGM8Y6NaFsPqvD0gm0LgD/+eBfv1T26OwE+ASzcXsk8LP8g6HYhLP8Wio5fNTC5ZWPuH96Bb9O38NXiza4NVkREROQYSrDEqxWVlHHv+DQC/X147rIkfHwqGN63d6tjA9oelzo2pK3A/G3zCQ8Ip3OT4zcfFu8S6BtIYkxi5SsJgmM1weICWP5dhadvP609fRMiefSbpWzctd9FkYqIiIgcTwmWeLUXp6wic/MenhqVSGyjoIoLZYx3bECbfFWl9czfOp+U2BR8fXwrLSPeo3dsb1bkriC/KL/iAi37Q+NWkP5phad9fQzPX56EMXDfhMWUaOl2ERERcRMlWOK15q7bxeu/rWV0n5aM6N6s4kLWwuKPoNUAiG5fYZEt+7aQvS+bfnH9XBitOFNKsxTKbBmLdyyuuICPj2O+3frfHD2YFYhvEsK/LurBoo15vDRtjQujFREREfmDEizxSnsOFPPAhDQSokL5+3ldKy+4aT7sWnPi3qtt8wHo06yPs8MUF0mKScLfx5/5W+efoNBoR89l5ueVFhmZ1JxRvVrwyrTVpG7Q0u0iIiLiekqwxOtYa3n4q0x25B/kxcuTCQ30q7zw4g/BP9Sx6EEl5m+dT2RQJO0bV9zDJd4n2C+YpJgk5m2bV3mhqHbQIuW4TYeP9fjIbrRoEsy949PIL9TS7SIiIuJaSrDE63y1eDPfZWzl/jM6ktSyceUFiwpg6VfQ7SIIDK+wiLWW+dsc8698jH7c65L+cf1ZkbuC3YW7Ky+UNBp2LIVtmZUWCQ/y58XLk9mSd4B/TFrqgkhFRERE/qC/OMWrbMrdz6PfLKVvQiS3ndruxIWXfePY+6pn5cMDN+ZvZPv+7Zp/VQcd+p4dGuJZoe4Xg4//SXuxereO5O5hHfhy0WYmpW9xZpgiIiIiR1GCJV6jpLSM+yakYQw8f3kSvhUtyX6kxR9BZFvHAheV0Pyruqt7dHdC/UOZu3Vu5YVCIqHjWZAxAUqKTljf3cPa07NVYx7+KpPNeQecHK2IiIiIgxIs8RqvTl9L6obd/PPC7sQ3CTlx4V1rYcMsx+IWpvJEbP7W+TQNbkpCowTnBisu5+fjR0psCvO2nmAeFkCva6EgB1b9cOL6fH343+U9KSuzPDAhjdIy68RoRURERByUYIlXSN2wm5emreaini24ILnFyS9I+wSMDyRdUWkRay0Lti2gT1wfzAmSMPFe/eL6sSl/E1v2nWBYX/vh0KgFpL5/0vpaRYXw+AXdmbc+lzd/X+vESEVEREQclGCJx+07WML9E9KIiwji8Qu6nfyC0hJHgtVuGERUnoytzVvLrsJd9G3W14nRijv1j+sPcOJeLB9f6Hk1rJ0GuzectM6Le7Xg3B5xPP/zKjKy85wUqYiIiIiDEizxuMcmLSV7935evDyZRkH+J79g9c+QvwV6jTlhsVlbZgEwsPlAZ4QpHtC+cXuigqJOPA8LHAkWOOblnYQxhn9d1J2Y8EDuG5/G/qISJ0QqIiIi4qAESzzqu4wtTEzN5q6h7UlJiKzaRanvQVgz6HT2CYvN2jyLthFtaRbazAmRiicYY+gb15d5W+dh7QnmTDVuBe1PdyRYpSdPmBqHBPDcZUms31XAk98td2LEIiIi0tApwRKP2ZJ3gL99mUlyy8bcfXqHql2UtxFW/wK9rgHfynu7DpQcIHV7KoNaDHJStOIp/eP6s6twF2vy1py4YO/rHD2ba36pUr0D20Vzyylt+XT+Rn5auq32gYqIiIigBEs8pLTM8sBnjpXc/jc6GX/fKv4oHlrIoNe1Jy62PZWisiIGNVeCVdcdmoc1e8vsExfsOAJCm1ZpsYtD/nRGJ7q3aMRDX2SwY29hbcIUERERAZRgiYe89fs65q7L5bGR3WgdFVq1i0qLYfGH0OFMx5CwE5i1eRaBvoH0ju3thGjFk5qHNadtRFtmbp554oK+/o5Np1f/BHurtplwgJ8PL17ekwPFpfzp83TKtHS7iIiI1JISLHG7tE15PPfzSs7tEcclveOrfuHKH2Dfdki5/qRFZ2+ZTe/Y3gT5BdUiUvEWQ1oMIXV7KvuL95+4YK9rwZZVabGLQ9o3DeORc7syY/VO3pudVbtARUREpMFTgiVute9gCfeOX0xsoyD+PapH9fanSn0PGsU7erBOYFvBNtbtWafVA+uRIfFDKC4rPvmmw5Ftoe1pkDquSotdHHJVv1YM79KUp39YwfKte2sVq4iIiDRsSrDErR79egmbcvfzv9HJRARXYUn2Q3LXOfY56nWtY9+jE5i12bE8u+Zf1R+9mvYixC/k5MMEAfreAns3w8rJVa7fGMPTFyfSKNif+8anUVhcWotoRUREpCFTgiVu89XibL5cvJl7Tu9Q9SXZD0l9H4yvY/XAk5i1ZRaxIbG0a9yuhpGKt/H39ad/XH9mbJ5x4uXawbHYRURLmP9Wte4RFRbIs5cmsnJ7Pk/9sKIW0YqIiEhDpgRL3GLDrgIe+WoJfRKacNfQ9tW7uPgALPrAse9Vo+YnLFpSVsLcLXMZ1GJQ9YYfitcbHD+YrQVbWbdn3YkL+vhCnxshawZsX1ate5zWqSnXDUxg3Owsfl25oxbRioiISEOlBEtcrri0jHvGp+HrY3hxdE/8qrok+yGZn8OBXOh320mLpuekk1+cr/lX9dCQFkMAmJE94+SFe40BvyBYMLba93no7M50jA3jz59nsGvfwWpfLyIiIg2bEixxued/WUX6pjyevjiRFo2Dq3extTD3DYjtDgmDT1p8+sbp+Pn4af5VPdQstBkdmnSo2jyskEjofgmkj4cDedW6T5C/L/8b3ZO9B4p58IvMkw9JFBERETmCEixxqdlrdvLGb2u5om9Lzu4RV/0KsmbAjqWO3quTDPmz1jJ903T6NetHWEBYDSMWbza4xWBSd6RSUFxw8sJ9b4bi/ZD+abXv0yWuEQ+e3Zkpy7fzvpZuFxERkWpQgiUuk1tQxH0T0mgbHcrfz+tas0rmvgEhUdDj0pMWXb9nPRvzNzK05dCa3Uu83pAWQygpK2HOljknL9w8GeL7wvyxUFZW7XtdPzCB0zs35d+TV5CZvaf6wYqIiEiD5NIEyxgzwhiz0hizxhjzUAXnTzHGLDLGlBhjLnFlLOJeZWWWv3yeTt7+Yl6+ohchAX7VryR3nWOp7d7Xg//JNwyetmkaAKe1PK3695I6IblpMhGBEUzbOK1qF/S7FXLXOpb4ryYfH8OzlyYRHRbAnZ8sYm9hcbXrEBERkYbHZQmWMcYXeBU4G+gKXGGMObYbYyNwHfCJq+IQz3hrxjqmrtjB387pTNfmjWpWyfyx5SvC3VSl4tM3TadbVDdiQ2Nrdj/xev4+/pwWfxq/Zv9KcWkVEp4uIyGsGcx5pUb3axIawMtX9mRz3gH+qvlYIiIiUgWu7MHqC6yx1q6z1hYB44ELjixgrc2y1mYA1R+/I15r3rpdPPPTSs7tEceYgQk1q+RgPiz+CLpeCI1OPndr54GdZOZkanhgAzC89XDyi/JZsG3ByQv7BUD/22DddNiaXqP79W4dyV/O6sT3mVv5aO6GGtUhIiIiDYcrE6wWwKYjXmeXH6s2Y8wtxpiFxpiFOTk5TglOXCMn/yB3f7qYVpEhPHVxj5rvRZX2CRzcC/1vr1LxXzf9isUytJUSrPpuQPMBBPsFM2XjlKpd0Pt6CAiHWS/V+J63DGnLaZ1iePK75SzZrPlY9ZnaGxERqa06sciFtfYta22KtTYlJibG0+FIJUrLLPdNWMyeA8W8dlUvwoP8a1hRiWNIV3xfiE+p0iXTN02nRVgLOjTuULN7Sp0R6BvIKfGnMG3jNErLSk9+QXBjSLkOln4Fu2vWA+XjY3j+smQiQwO465NF5Gs+Vr2l9kZERGrLlQnWZqDlEa/jy49JPfW/qauZtWYXT17QnS5xNZx3BY4/hPM2wuD7q1R8f/F+5m6Zy9CWQ2veYyZ1yvBWw9lVuIv0nCoO++t3OxgfmPtaje8ZWT4fa9PuAzz4RYbmY4mIiEiFXJlgLQA6GGPaGGMCgNHAJBfeTzzo91U5vDxtNZf0jueyPi1PfkFlrIVZL0JMZ+g4omr3zv6dorIihrUaVvP7Sp0yJH4I/j7+VR8mGNHCsdT/og9gf26N79snIZIHR3RicuY23vx9XY3rERERkfrLZQmWtbYEuAv4CVgOfGatXWqMecIYMxLAGNPHGJMNXAq8aYxZ6qp4xHU25x3gvglpdGwazpMXdK9dZWumwPYlMOhe8Knaj+ePWT8SExxDr6a9andvqTNC/UMZ0HwAUzdMrXpP0sC7HRsPL3i7Vve+eUhbzk2M478/rmDm6p21qktERETqH5fOwbLWTrbWdrTWtrPW/qv82KPW2knlny+w1sZba0OttVHW2m6ujEec70BRKbd+uJDikjJeu7oXwQG+tatw5gvQKB66V21btILiAmZkz+DMhDPx9anlvaVOGd5qOFsKtrA8d3nVLojtCh3OgnlvQvGBGt/XGMN/L06kfdMw7v50Edm799e4LhEREal/6sQiF+KdrLU89GUGS7fs5cXRybSLCatdhRvnwoZZMOBOx/LaVTB903SKyoo4K+Gs2t1b6pyhLYfiZ/z4MevHql806F7YvxMWfVire4cG+vHmNSmUlFpu+yiVwuIqLLYhIiIiDYISLKmxsTPW8U3aFv50RkdO7+KEzX1/fQpCY6D3mCpf8tP6n4gNiSUpJqn295c6pXFQYwa2GMgP63+gzFZxK73WA6HVQEdPaXFhre7fJjqUF0cns2TzXh7+aokWvRARERFACZbU0G+rcnjqhxWc06MZdw5tX/sKN851bAY76F4ICK3SJXuL9jJryyzOSjgLH6Mf5Ybo3Dbnsq1gG4u2L6raBcbAaQ9B/hZYXLteLIDTu8Ry7+kd+GJRtjYhFhEREUAJltRA1s4C7v5kER1jw3nmkiTnLI1+qPcq5YYqX/JT1k8UlxVzdpuza39/qZNOa3kawX7BfL/++6pf1OYURy/WjOdr3YsFcO/pHRjWuSmPf7uM2Wu06IWIiEhDpwRLqmXfwRJu/mAhPj6GsdemEBroV/tKa9B7BfDt2m9pG9GWblFaG6WhCvEPYVirYfyc9TPFpVXc/NfJvVg+PoYXRyfTJjqU2z5KZc2OfbWuU0REROouJVhSZaVllvvGL2bdzgJevbIXLSNDal+ptTD9X9Xuvdq4dyOLdyxmZLuR2ly4gTunzTnsLdrL75t/r/pFh3uxnoOi2q8C2CjIn3ev60OAnw83jFtAbkFRresUERGRukkJllTZk98tY8ryHfzj/K4Mah/tnErXToP1v8OQP1Wr92rS2kkYDOe1Pc85cUidNbD5QKKDo/l6zddVv8gYGPYI5G+F+W86JY6WkSG8dW0K2/YWcuuHCzlYopUFRUREGiIlWFIl781az7jZWdw4uA3XDkhwTqVlZTDlH9C4dbV6r8psGd+t+47+cf2JDXXC6oVSp/n5+DGy3UhmZM8gZ39O1S9MGAQdR8CMF2B/rlNi6dWqCc9dmsSCrN089EWmVhYUERFpgJRgyUlNWbadJ79bxpldY/nbOV2cV/GSibAtE4b9HfwCq3zZgm0L2LxvMyPbj3ReLFKnXdT+IkptKd+s/aZ6F57+KBzcCzOfd1os5yc1589nduSrxZt5edoap9UrIiIidYMSLDmhtE153P3pYrq3iODF0cn4+jhpvlPJQZj2JDTrAd0vrtaln638jIjACM5ofYZzYpE6LyEigV5Ne/H1mq+r12sU2w2SroB5b0HeJqfFc+fQ9ozq1YLnf1nFl4uynVaviIiIeD8lWFKpNTvyuf69+cSEB/L2mBRCApywYuAh896EvI0w/HHwqfqP4c4DO5m2cRoXtruQQN+q93pJ/Teqwyg27N3Awu0Lq3fh0L85/p36hNNiMcbwn1E9GNguiv+bmMH0FTucVreIiIh4NyVYUqEteQe45p35+Pr48OGNfWkaHuS8yvO3w2//hQ5nQfvTq3XpV6u/osSWcEnHS5wXj9QLZyacSaOARoxfMb56FzZuCQPvhszPHFsGOEmgny9vXtObznHh3P5xKqkbnDPPS0RERLybEiw5Tm5BEde8M499hSW8f0MfWkdVfXW/Kpn6OJQUwoj/VOuy0rJSJq6aSL+4fiREJDg3Jqnzgv2CGdVhFFM3TmVbwbbqXTzkAQhvDj/8H5Q5b/W/8CB/xl3fl2aNgrj+vQWs3JbvtLpFRETEOynBkqPsLSzmuvfms2n3AcaOSaFb8wjn3iA7FdI+hgF3QlS7al36a/avbCnYwmUdL3NuTFJvXN7pcspsGZ+t/Kx6FwaEwplPwtZ0p2w+fKTosEA+vLEfQf6+XPPOPNbvLHBq/SIiIuJdlGDJYfmFxYx5dz7Lt+7ltSt70b9tlHNvUFYKk/8MYc3glD9X+/IPln5A89DmDGs1zLlxSb0RHx7PqS1P5YvVX3Cw9GD1Lu5+sWPz4alPOG3Z9kNaRobw0U39KCmzXDl2Lht31X5zYxEREfFOSrAEgIKDJVz/3gIysvfw8hW9GN7VBftLzR8LWxbBWf+CwPBqXZqZk8miHYu4uuvV+Pk4cbENqXeu6nIVuYW5TF43uXoXGgPnPAOFe+DnR5weV8fYcD66sR8Hiku5YuxcsncryRIREamPlGAJ+4tKuGHcAhZvyuOl0T0Z0b2Z82+St9HRM9DhzGovyw7w/rL3CfcPZ1SHUc6PTeqVfs360TmyM+8ueZfS6s6natYdBt3rGMa6drrTY+vavBEf3diP/MJirhg7ly15B5x+DxEREfEsJVgN3N7yYYELsnJ5/rIkzk2Mc/5NrIXvHnB8fu7zjp6CasjOz+aXDb9wScdLCPV38oIbUu8YY7ixx41k7c1i2qZp1a/glP+DqPbw7b1Q5Pxepu4tIvjwxn7kFRRz2Ztz2LBLc7JERETqEyVYDVhuQRFXjZ3H4o15vHxFLy5IbuGaG2VMgDW/wOmPOpbErqa3M9/Gz/hxVZerXBCc1EdntDqD1o1a83bm29XbeBjAPwjO/x/kbYBp/3RJfEktG/PJzf0pOFjCpW/MYfV2rS4oIiJSXyjBaqC27y3k8jfnsGp7PmOvTXFNzxU4hgZO/gu07A99b6725dn52Xyz5hsu6XgJsaEumBcm9ZKvjy/Xd7ueZbuWMXvL7OpXkDAY+twEc1+Fdb86PT6AHvERTLh1ABa47M05ZGbvccl9RERExL20WkADtC5nH9e9t4Bd+w4y7vq+DGjn5NUCDykrhS9vdQwRHPUm+PhWu4q3M9/Gx/hwQ/cbXBCg1GfntzuftzLe4uXFLzOw+UBMNYemcsaTsO43+Op2uH0WhEQ6PcaOseF8fusArnp7HleOncsb1/RmUPtop99HROqBx5y8bUpd1KaVpyMQqRL1YDUwC7JyGfX6bPYdLOHjm/u7LrkCmPUibJztWJmtSUK1L9+0d5N6r6TGAnwDuCP5DpbuWsqUjVNqUEEIXDwWCnbAd/c73ihwgYToUD6/bQBxjYMY8+58vkjNdsl9RERExD2UYDUg32ds5aq359EkJICv7hhIcsvGrrvZxrkw/d/Q7SJIGl2jKl5Y9AL+vv7c1OMmJwcnDcV5bc+jXUQ7Xlr0EiVlJdWvoHlPGPo3WPY1pL7n9PgO36ZxMJ/fNpC+bSL50+fp/G/K6urPHRMRERGvoASrAbDW8ur0Ndz5ySISW0Tw5e0DaR3lwtX48rfDZ2OgcSs478VqrxoIsGj7In7Z8As3dL+BmJAY58coDYKvjy9397ybrL1ZfLn6y5pVMug+aHc6/PAgZKc6Nb4jRQT7M+76vozq1YIXpqziT5+nU1hczWXmRURExOOUYNVzBQdLuPOTRTzz00rOT2rORzf1o0logOtuWFoMn1/n2Kz18o8guHG1qyizZTyz4BmahjRlTLcxTg9RGpZhrYaREpvCS4tfIq8wr/oV+PjCxW9DeDP47Foo2On0GA8J8PPhuUuTuH94R75ctJnL3pyjvbJERETqGCVY9dj6nQVc9NosflyyjYfP6cJLo5MJ8q/+QhNVZi38+FfHvKuRL0FstxpV89Xqr1iyawn39LyHYL9gJwcpDY0xhr/2+yv7ivbx8uKXa1ZJSCRc9iEU5DjeQCgpcmqMRzLGcO/wDoy9NoV1OQWc//JM5qzd5bL7iYiIiHMpwaqnJmduZeQrM8nJP8gHN/Tj5lPaVn8Vteqa8yosGAsD7oLEy2pUxc4DO3ku9TlSYlMY2W6kkwOUhqpjk45c0fkKPl/1OUt3Lq1ZJc2TYeTLkDUDJt3tskUvDjmjayxf3zmIxiH+XP3OPF77dQ1lZZqXJSIi4u2UYNUz+4tKeHBiBnd8vIi2MWFMumswgzu4YdnnpV/Bzw9D1wscy1vX0NPzn6awpJBHBzzq+oRQGpQ7ku8gJjiGR2Y9QlFpDXugki6HoY9AxnjHIi4u1r5pGF/fOYgR3Zrx3x9Xcs2789i+t9Dl9xUREZGaU4JVjyzZvIfzXp7JZ6mbuOO0dky8bQAtI0Ncf+N1vzr2u2rZHy56C3xq9mP1y4Zf+DHrR25OvJk2EW2cG6M0eOEB4Tw28DHW5K3htbTXal7RKX+GntfA7/+F+WOdF2AlwoP8eeXKnjw1qgeLNuQx4sXf+WXZdpffV0RERGpGCVY9cLCklGd/WsmFr85iX2EJH9/Yj/8b0Rl/Xzd8e9fPgE9GQ1R7uOJT8A+qUTXbCrbxj9n/oHtUdy3LLi4zJH4IozqM4r2l75G2I61mlRgD570Anc6ByX+Ghe86NcaKb2kY3bcV3949mLiIYG7+YCH3T0hjd4Hr5oKJiIhIzSjBquMWb9zNeS/N5JXpaxiZ3Jyf7juFge3dMCQQIGsWfHIZNGkN137jWAigBkrLSnloxkOUlpXy9ClP4+/j7+RARf7w55Q/0zy0OX/+7c/kFubWrBJff7h0HHQ4y7EJcer7To2xMu2bhvHVnQO55/QOfJu+hTNe+I3JmVvdcm8RERGpGiVYddTugiIe+TqTi1+fTcHBEt67vg/PX5bs2iXYj7RiMnw0Chq1gGsnQVjN96p6PvV5Uren8nD/h2nVqJUTgxQ5XnhAOM+f9jy7C3fz0O+OxL5G/ALhsg+g/XD49h6Y9T+XL3wBEOjnywNndGTSXY7erDs+XsSN4xaQtbPA5fcWERGRk1OCVceUlJbx/uwsTnv2Vz6dv4lrByTw0/2nMLRTU/cFkToOJlwFTbvC9T9AeGyNq/p6zdd8sOwDruh8hVYNFLfpEtWFv/X7G3O2zuG51OdqXpF/EIz+BLqNgl8ehZ/+BmVlzgv0BLo2b8RXdwzk4XO6MG99Lme+8DtP/bCCfQdL3HJ/ERERqZifpwOQqrHW8vOy7Tz380pWbd/HoPZR/OP8bnSMDXdfEKUlMPUxmP0ytD/DMUQqMKzG1c3dOpcn5jxBv7h+/F+f/3NamCJVMarDKFbnrebDZR8SFxrHNV2vqVlFfoFw8TsQFgtzX4PdG+Ci1yEowrkBV3RrXx9uPqUtF/Rszn9/XMkbv63ly0XZ3H16By5PaUmAn95DExERcTclWF7OWsvvq3fy3M8rycjeQ9voUN64uhdndWvm3mXMC3Y6NljNmgF9boYR/3HMQ6mhtB1p3DPtHlo3as1zpz6Hn49+FMW9jDH8JeUvbC/YzjMLnqFxYGPOb3d+zSrz8XH8TjRJcGxXMHYYXP4xNO3s1Jgr0zQ8iGcvTeKqfq349+Tl/P3rJbz521ruG96RC5Ob4+eOBW9EREQE0BBBr1VaZvlxyVZGvT6bMe/OZ9e+Iv57cSI/338KI7rHuTe5WjMF3hgM2Qvgwjfg3GdrnVzdMeUOmoY0ZeyZY4kIdP07/SIV8fXx5T9D/kPfZn15eObDfL3m65pXZgz0vw3GfAuFe2HsUFjwjlvmZR3Ss1UTPrt1AOOu70OTkAD+/Hk6w5//jY/mbqCwuIZzzURERKRa1G3gZQoOlvDV4s28M3M963cW0CoyhCcv6MZlfVoS6Ofr3mAO5jvmlSx8F2I6w5WfQVxirar8Pft3/vTrn4gNjWXsGWOJDnbTiocilQjyC+Ll01/mvun38fdZf2fPwT1c2/Xamr+J0Xog3Po7fH07fP8ArPgeRr4MES2cG3gljDGc1qkpp3aM4ael23n91zU88vUSXvhlFdcOSODKfq2ICQ90SywiIiINkRIsL7F0yx4+mbeRb9K2sO9gCUnxEbx6ZS9GdG+Gr48be6vA8Y575kT45e+Qvw0G3g1DH6nxHleOKi0fLPuAF1JfoHNkZ14b/hqRQTVb1l3E2YL9gnlp2Ev8dcZfeXbhs6zfs56H+z2Mf017ahvFwTVfwYK34ee/wyt94NS/QP87wc89K30aYxjRvRlndYtl3vpc3vp9HS9MWcXL01ZzVrdmXNmvFQPaRuHj7v9fRERE6jklWB60dc8BvkvfyqT0LWRu3kOgnw/nJsZxVb9W9GrVxL3DAA/ZMBumPgEb50BcMlz2IbTsU6sq9xzcw+NzHueXDb8wvNVw/jn4n4T6hzonXhEnCfQN5NlTn+WVxa8wNnMsy3OX8/SQp0mISKhZhcZA35sdy7j/9DeY8hgs/giGPgxdL3TM23IDYwz920bRv20Ua3bsY/z8jUxclM33mVtpFRnCBcnNGZnUnA7uXDBHRESkHjPWjfMDnCElJcUuXLjQ02HU2Kbc/UxZvp0fl2xjflYu1kJifAQX9WzBqJ7xRIR4YJNda2HDLPj9GVj3q2M1tNP+Cr2uBZ/aDUucunEq/5z7T/IK87i3172M6TbGM4mjSDVM3TCVf8z5B0WlRdzT8x5Gdx5d+4VYVv8CPz0MO1dC026OHq3O54Ov+9/nKiwu5ccl2/hiUTaz1uykzELnZuGc0yOO4V1i6RIXXqd/T40xqdbalNrWU9fbm/oi4aHvPR2CV8gKutLTIXhcjzbaKxMgc0ymp0OQcpW1N0qwXKzgYAmpG3YzZ90upq/YwYpt+QC0bxrGeYlxjExqTtuYmi91XisH82HZNzD3DdieCSHRMPg+SLkRAkJqVfXq3at5buFzzNoyi05NOvHPwf+kc6R7VlQTcYZtBdt4bPZjzNoyi86RnXmg9wP0j+tfu8SjrBSWfAm/PQW71kBES+hzEyRfCWFu3MvuCDvyC5mcsZVv0reweGMeAC0aBzOsc1MGtY+ib5soIt21gbmTKMGqX5RgOSjBUoJ1iBIs76EEy0327C8mLTuPeet2MXfdLjKy91BSZvHzMaQkNGF4l1hO7xJLm2gPDZErKXKsCpj5Oaz8AUoOQEwXx+pnPS6rVWJlrWXxjsW8v/R9pm+aTlhAGLcm3sqVXa7E38cDPXMitWSt5ZcNv/DMwmfYVrCN3rG9ua7bdQxpMQTf2vTulpU6fv/mveHY+sD4QNvToMel0Pk8CGrktGeojh35hUxfsYMpy3cwc/VODpSvPNi5WTj920bRr00kvVo3oWl4oFf3cCnBql+UYDkowVKCdYgSLO+hBMvJrLXsyD/I8q17WbplL0s272HJlj1syj0AgJ+PITE+4vDch96tmxAa6KEpb7nrYO10WDsN1s+Ag3sgOBK6XeT4g65Vf8d8kRraeWAnP2X9xHdrv2PJriVEBEZwWcfLuLbrtTQOauy85xDxkKLSIiaumsg7S95hx/4dxIXGcUnHSzg74WxaNmpZu8p3rIDMzxxveuRtBN9AaD0A2g2DtkMhtrvb5msdqaikjMzNecxdl8vcdbtYmLX7cMIVHRZI9xaN6N48gu4tIuga14gWTYLdvyBPJZRg1S9KsByUYCnBOkQJlvfwSIJljBkB/A/wBd621j51zPlA4AOgN7ALuNxam3WiOt3Z4JWWWXbkF7Il7wCb8wpZn1PAup37WJdTwPqdBew7WHK4bOuokMN/bPRoEUHPVo09k1Dtz4VtmbBlEWxeBFsWw55NjnMRLR3vknc53/HHWw1XSCsuK2bpzqXM3zafOVvmkLo9FYulfeP2XN7pcka2G0mIf+2GGIp4o+KyYn7b9BsTVk5g7ta5ALRv3J6hLYfSP64/PWJ6EOwXXLPKrXXsNbf0a8ebITnLHcdDoqB5L2jRy/FvXCKEx9XqTZGaOJRwZWTvYcnmvSzdsofVO/ZRWuZoQwL8fEiICqFtdBhtY0JpGxNGfJNgmkcE0ywiiAA/9yWJSrDqFyVYDkqwlGAdogTLe1TW3rgsAzDG+AKvAmcA2cACY8wka+2yI4rdCOy21rY3xowGngYud1VMh+zad5CcfQfJ3VfEroIicguK2LXv4OHPc/IPsiXvANvzDx7+48HxTNA8Ipi2MaFc0jueNtGhdIgNo1vzCCKCPTQEbtkkWP2zYz7HzlWwf9cf55okQHyKY5n1dsMgqn2t/yhbmbuSa364hgMljp66Dk06cGvSrYxIGEG7xu1qVbeIt/P38Wd46+EMbz2c7Pxspm+azvRN03l3ybuMzRyLn48f/xz0T85te271KzcGWvZ1fADs3eJYdCZrpuONkrVTwZY5zgWEQ3R7iOrg+B3vd6vTnrEyAX4+9G4dSe/Wf2yvUFhcyvKte1m5LZ91OwtYl7OPVTvymbJ8OyVlR795FxMeSPOIIJo2CiIqNIDI8o/osMDDn0eFBdCsUZBXDz8UERE5GVd2sfQF1lhr1wEYY8YDFwBHJlgXAI+Vfz4ReMUYY6yLxy3e+P5C0jblHXXMGGgc7H+4we/fNormjYOJaxxE88bBtGgcTKvIEIL83bzZ78lsnAOrfoTojo65G9EdoWlnxzvdIc7fZ6p1o9Zc0O4C+jTrQ0qzFO1lJQ1WfHg813S9hmu6XkN+UT5pO9JI3Z7qvMVcGjV3LH6RXP6u9cF9jt7p7Utg52rHGyob58C+bW5JsCoS5O9Lz1ZN6NmqyVHHi0vLyN59oLz3/wBb8xwjAbbsOcDGXftZvDGP3fuLjnoDCxxJ3MonR7jzEURERJzOlQlWC2DTEa+zgX6VlbHWlhhj9gBRwE4XxsU9p7dnf1HpUe+eNg72x8/X/fMcau3Mf8KI/7jtdkF+QTzc/2G33U+kLggPCGdI/BCGxA9x3U0Cwxxzs1oPOPp4Wanr7llD/r4+tIkOPeFiPmVllr2FxUeNIthfVKreKxERqfPqxEbDxphbgFvKX+4zxqysoFg0Lk7MvFxDfv6G/Oyg52/Iz9+Qnx0qf/7WNa2wiu2NiNt5yVsPHv4/Z4nnbu1FzHVe8tMgUEl748oEazNw5PJa8eXHKiqTbYzxAyJwLHZxFGvtW8BbJ7qZMWahMyY111UN+fkb8rODnr8hP39DfnZwzfNXpb0Raaga+v85IlXlyjFxC4AOxpg2xpgAYDQw6Zgyk4Ax5Z9fAkxz9fwrERERERERV3FZD1b5nKq7gJ9wLNP+rrV2qTHmCWChtXYS8A7woTFmDZCLIwkTERERERGpk1w6B8taOxmYfMyxR4/4vBC41Em3a+hDOhry8zfkZwc9f0N+/ob87KDnF3E3/c6JVIFLNxoWERERERFpSOrguuQiIiIiIiLeqc4mWMaYS40xS40xZcaYSle0McaMMMasNMasMcY85M4YXckYE2mM+cUYs7r83yaVlCs1xqSVfxy7yEidcrLvpTEm0Bgzofz8PGNMggfCdJkqPP91xpicI77fN3kiTlcwxrxrjNlhjKlwjV7j8FL51ybDGNPL3TG6ShWe/TRjzJ4jvu+PVlSurjLGtDTGTDfGLCv/P//eCsrU2++/iIjUPXU2wcKxGcIo4PfKChhjfIFXgbOBrsAVxpiu7gnP5R4CplprOwBTy19X5IC1Nrn8Y6T7wnOuKn4vbwR2W2vbAy8AT7s3Stepxs/yhCO+32+7NUjXGgeMOMH5s4EO5R+3AK+7ISZ3GceJnx1gxhHf9yfcEJM7lQB/stZ2BfoDd1bws1+fv/8iIlLH1NkEy1q73Fp7sg0g+wJrrLXrrLVFwHjgAtdH5xYXAO+Xf/4+cKHnQnGLqnwvj/yaTARON8bUl9346vPP8klZa3/HsdJoZS4APrAOc4HGxpg490TnWlV49nrNWrvVWruo/PN8YDnQ4phi9fb7LyIidU+dTbCqqAWw6YjX2RzfMNdVsdbareWfbwNiKykXZIxZaIyZa4y50D2huURVvpeHy1hrS4A9QJRbonO9qv4sX1w+RGqiMaZlBefrq/r8u14VA4wx6caYH4wx3TwdjKuUD/vtCcw75lRD//6LuIQxZpAxJrT886uNMc8bY1p7Oi4Rb+fSZdpryxgzBWhWwamHrbXfuDsedzvR8x/5wlprjTGVLQfZ2lq72RjTFphmjMm01q51dqziFb4FPrXWHjTG3IqjN2+Yh2MS11uE4/d8nzHmHOBrHEPl6hVjTBjwBXCftXavp+MRaSBeB5KMMUnAn4C3gQ+AUz0alYiX8+oEy1o7vJZVbAaOfBc/vvxYnXCi5zfGbDfGxFlrt5YPhdlRSR2by/9dZ4z5Fce7v3UxwarK9/JQmWxjjB8QAexyT3gud9Lnt9Ye+axvA/91Q1zeok7/rtfGkcmGtXayMeY1Y0y0tXanJ+NyJmOMP47k6mNr7ZcVFGmw338RFyspfxP3AuAVa+07xpgbPR2UiLer70MEFwAdjDFtjDEBwGigTq+kd4RJwJjyz8cAx/XoGWOaGGMCyz+PBgYBy9wWoXNV5Xt55NfkEmCarT8bvZ30+Y+ZczISx1yVhmIScG35anL9gT1HDKGt14wxzQ7NNTTG9MXx/3p9eWOB8md7B1hurX2+kmIN9vsv4mL5xpi/AlcD3xtjfAB/D8ck4vW8ugfrRIwxFwEvAzE4funTrLVnGWOaA29ba8+x1pYYY+4CfgJ8gXettUs9GLYzPQV8Vv5O0gbgMgDjWLL+NmvtTUAX4E1jTBmOP7qestbWyQSrsu+lMeYJYKG1dhKOP8I+NMaswbEowGjPRexcVXz+e4wxI3GsupYLXOexgJ3MGPMpcBoQbYzJBv5BeSNvrX0DmAycA6wB9gPXeyZS56vCs18C3G6MKQEOAKPr0RsL4Hhj6Bog0xiTVn7sb0ArqP/ffxEPuxy4ErjRWrvNGNMKeMbDMYl4PVO/2mERERERcQZjzNPW2gdPdkxEjlbfhwiKiIiISM2cUcGxs90ehUgdU2eHCIqIiIiI8xljbgfuANoaYzKOOBUOzPZMVCJ1h4YIioiIiMhhxpgIoAnwH+ChI07lW2sb7MbnIlWlBEtEREREKmSM8QViOWLUk7V2o+ciEvF+GiIoIiIiIscpX732MWA7UFZ+2AKJnopJpC5QD5aIiIiIHKd825N+x2xkLyInoVUERURERKQim4A9ng5CpK5RD5aIiIiIHGaMeaD8025AJ+B74OCh89ba5z0Rl0hdoTlYIiIiInKk8PJ/N5Z/BJR/iEgVqAdLRERERETESdSDJSIiIiLHMcZ8i2PVwCPtARYCb1prC90flYj30yIXIiIiIlKRdcA+YGz5x14gH+hY/lpEKqAhgiIiIiJyHGPMAmttn4qOGWOWWmu7eSo2EW+mHiwRERERqUiYMabVoRfln4eVvyzyTEgi3k9zsERERESkIn8CZhpj1gIGaAPcYYwJBd73aGQiXkxDBEVERESkQsaYQKBz+cuVWthC5OSUYImIiIjIYcaYYdbaacaYURWdt9Z+6e6YROoSDREUERERkSOdCkwDzq/gnAWUYImcgHqwREREREREnESrCIqIiIjIcYwxscaYd4wxP5S/7mqMudHTcYl4OyVYIiIiIlKRccBPQPPy16uA+zwVjEhdoQRLRERERCoSba39DCgDsNaWAKWeDUnE+ynBEhEREZGKFBhjonAsbIExpj+wx7MhiXg/LXIhIiIiIocZY+4DZpe/fB7oDiwFYoBLrbXpHgpNpE5QgiUiIiIihxljngUG4thgeAWwGfgd+NRau9OTsYnUBUqwREREROQ4xpgAIAVHsjWg/CPPWtvVo4GJeDltNCwiIiIiFQkGGgER5R9bgEyPRiRSB6gHS0REREQOM8a8BXQD8oF5wFxgrrV2t0cDE6kjtIqgiIiIiBypFRAIbMMx/yobyPNkQCJ1iXqwREREROQoxhiDoxdrYPlHdyAXmGOt/YcnYxPxdkqwRERERKRCxph4YBCOJOs8IMpa29ijQYl4OSVYIiIiInKYMeYe/ui5KsaxJ9ahj0xrbZkHwxPxelpFUERERESOlAB8Dtxvrd3q4VhE6hz1YImIiIiIiDiJVhEUERERERFxEiVYIiIiIiIiTqIES0RERERExEmUYImIiIiIiDjJ/wMAcp1VYcFOwAAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAFgCAYAAACmKdhBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABvuElEQVR4nO3dd3RVVdrH8e9OrwRSCIEAofckQOiggqjYULFhxd77zLw6o+NYpuhYx65YsINiQ8VGUeklkEKvAUINhEAIhLT9/nEDUhJIuS3J77NWFrnn7LPPc1LYee5uxlqLiIiIiIiI1J6PpwMQERERERGpL5RgiYiIiIiIOIkSLBERERERESdRgiUiIiIiIuIkSrBEREREREScRAmWiIiIiIiIkyjBEvFixpi/GWPednKd+4wxbZ1Zp4iI1B/GmKuMMT9Xsex1xpiZro5JpC5RgiXiZsaYK40xC8sTna3GmB+MMYMrKmut/be19qby6xKMMdYY41eb+1trw6y162pTh4iIeB9jzF+NMT8cc2x1JcdGV1aPtfZja+2ZTorpV2PMTc6oS6SuUIIl4kbGmAeAF4F/A7FAK+A14IIKytYqkXJ1fSIi4nV+BwYaY3wBjDFxgD/Q85hj7cvLiogLKMEScRNjTATwBHCntfZLa22BtbbYWvuttfYvxpjHjDETjTEfGWP2AteVH/uovIpDjWFeee/XgPJ6bzDGLDfG7DbG/GSMaX3EPa0x5k5jzGpg9RHH2pd/fq4xZrExZq8xZpMx5jE3fTlERMT5FuBIqJLLXw8BpgMrjzm2FigwxrxTPpJiszHmn0ckYUcN+zPGnGmMWWmM2WOMec0Y89uxvVLGmGfL26H1xpizy4/9q/x+r5S3W68YhxeMMTvK255MY0x3l31FRDxACZaI+wwAgoCvTlDmAmAi0Bj4+Jhzp5T/27h8mN8cY8wFwN+AUUAMMAP49JjrLgT6AV0ruF8BcG35/c4FbjfGXFilpxEREa9irS0C5vFHe3EKjnZh5jHHfgfGASU4erN6AmcCxw3lM8ZE42iX/gpE4UjWBh5TrF/58Wjgv8A7xhhjrX24/P53lbdbd5Xf5xSgIxABXAbsquWji3gVJVgi7hMF7LTWlpygzBxr7dfW2jJr7YEq1Hkb8B9r7fLyev8NJB/Zi1V+Prei+qy1v1prM8vvl4EjOTu1Gs8kIiLe5Tf+SKaG4EhwZhxz7DfgHOC+8tEUO4AXgIrmZZ0DLC0feVECvARsO6bMBmvtWGttKfA+EIdjGHxFioFwoDNgytuvrTV4ThGvpQRLxH12AdEnmQu1qZp1tgb+Z4zJM8bkAbmAAVpUpU5jTD9jzHRjTI4xZg+OhC26mjGIiIj3+B0YbIyJBGKstauB2TjmZkUC3YEVOIYSbj2i/XgTaFpBfc05oh2x1log+5gy2444v7/807CKgrPWTgNeAV4Fdhhj3jLGNKr2U4p4MSVYIu4zBziIY8heZWw1z20CbrXWNj7iI9haO7uKdX4CTAJaWmsjgDdwJGgiIlI3zcEx9O5mYBaAtXYvsKX82BZgI472KPqItqORtbZbBfVtBeIPvTDGmCNfV8FxbZC19iVrbW8cQ9c7An+pRn0iXk8JloibWGv3AI8CrxpjLjTGhBhj/I0xZxtj/luFKnKAMuDIPazeAP5qjOkGjoU0jDGXViOscCDXWltojOkLXFmNa0VExMuUDwdfCDyAY2jgITPLj/1ePiTvZ+A5Y0wjY4yPMaadMaaiIeLfAz3K2y0/4E6gWTVC2s4R7ZYxpk/56Al/HPOAC3G0bSL1hhIsETey1j6Ho4F7BEfCtAm4C/i6CtfuB/4FzCof0tHfWvsV8DQwvnzlwSXA2dUI6Q7gCWNMPo7k77NqXCsiIt7pNxzD/Y7cAHhG+bFDK9JeCwQAy4DdOBayiDu2ImvtTuBSHItX7MLR67QQRw9YVfwPuKR8hcGXgEbA2PJ7biiv85lqPJuI1zOOobQiIiIiIidmjPHBMQfrKmvtdE/HI+KN1IMlIiIiIpUyxpxljGlsjAnEsTWIAeZ6OCwRr6UES0REREROZACOzYl3AucDF1ZxKxGRBklDBEVERERERJxEPVgiIiIiIiJOcqINT71SdHS0TUhI8HQYIiLipVJTU3daa2NqW4/aGxEROZHK2ps6l2AlJCSwcOFCT4chIiJeyhizwRn1qL0REZETqay90RBBERERERERJ1GCJSIiIiIi4iRKsERERERERJykzs3BEhHxFsXFxWRnZ1NYWOjpUBqkoKAg4uPj8ff393QoIiIuo7bG86rb3ijBEhGpoezsbMLDw0lISMAY4+lwGhRrLbt27SI7O5s2bdp4OhwREZdRW+NZNWlvNERQRKSGCgsLiYqKUoPnAcYYoqKi9I6uiNR7ams8qybtjRIsEZFaUIPnOfrai0hDof/vPKu6X38lWCIiIiIiIk7i0jlYxpgRwP8AX+Bta+1Tx5y/DngG2Fx+6BVr7duujElEpCH7+uuv6dixI127dvV0KCIiUgMJD33v1PqynjrXqfWB2hqX9WAZY3yBV4Gzga7AFcaYir7KE6y1yeUfSq5ERFzo66+/ZtmyZZ4Oo8p27Njh6RBERKSaGnpb48ohgn2BNdbaddbaImA8cIEL7yci0uBceOGF9O7dm27duvHWW28dPh4WFnb484kTJ3Ldddcxe/ZsJk2axF/+8heSk5NZu3YtaWlp9O/fn8TERC666CJ2794NwGmnncaDDz5I37596dixIzNmzAAck62vv/56evToQc+ePZk+fToA48aN48ILL+SMM84gISGBV155heeff56ePXvSv39/cnNzWbt2Lb169Toc1+rVq496fazff/+dO+64w6lfLxERqT61NdXjyiGCLYBNR7zOBvpVUO5iY8wpwCrgfmvtpgrKiIh4tafnP82K3BVOrbNzZGce7PvgCcu8++67REZGcuDAAfr06cPFF19MVFRUhWUHDhzIyJEjOe+887jkkksASExM5OWXX+bUU0/l0Ucf5fHHH+fFF18EoKSkhPnz5zN58mQef/xxpkyZwquvvooxhszMTFasWMGZZ57JqlWrAFiyZAmLFy+msLCQ9u3b8/TTT7N48WLuv/9+PvjgA+677z4iIiJIS0sjOTmZ9957j+uvv77SZ3v88ceZPn06mZmZ9OjRowZfQRERcQa1NdXj6X2wvgU+tdYeNMbcCrwPDDu2kDHmFuAWgFatWrk3QhERL/bSSy/x1VdfAbBp0yZWr15daaN3rD179pCXl8epp54KwJgxY7j00ksPnx81ahQAvXv3JisrC4CZM2dy9913A9C5c2dat259uNEbOnQo4eHhhIeHExERwfnnnw9Ajx49yMjIAOCmm27ivffe4/nnn2fChAnMnz+/wthmzJjBtGnTAEfjN3HixCp/TWpD7Y33cfZ8k7rKFfNkRKpKbU31uDLB2gy0POJ1PH8sZgGAtXbXES/fBv5bUUXW2reAtwBSUlKsc8MUEam9k/U0ucKvv/7KlClTmDNnDiEhIZx22mmH9+k4cknZmu4VFRgYCICvry8lJSVVLg/g4+Nz+LWPj8/h6y+++GIef/xxhg0bRu/evSttoB9//PHDn3/55ZcsWbKE7t271+g5qkPtjYjI0dTWVJ8r52AtADoYY9oYYwKA0cCkIwsYY+KOeDkSWO7CeERE6pU9e/bQpEkTQkJCWLFiBXPnzj18LjY2luXLl1NWVnb4XUeA8PBw8vPzAYiIiKBJkyaHx7x/+OGHh99hrMyQIUP4+OOPAVi1ahUbN26kU6dOVY45KCiIs846i9tvv73SIRszZ85k6tSph19ba49qBEVExH3U1lSfy3qwrLUlxpi7gJ9wLNP+rrV2qTHmCWChtXYScI8xZiRQAuQC17kqHhGR+mbEiBG88cYbdOnShU6dOtG/f//D55566inOO+88YmJiSElJYd++fQCMHj2am2++mZdeeomJEyfy/vvvc9ttt7F//37atm3Le++9d8J73nHHHdx+++306NEDPz8/xo0bd9S7iVVx1VVX8dVXX3HmmWdWeL6iBu6LL75wWy+WiIg3c/dwUbU11WesrVsjIFJSUuzChQs9HYaICMuXL6dLly6eDqPOefbZZ9mzZw9PPvnkcedmzZrF4MGDK7zu0ksv5bPPPjvqWEXfA2NMqrU2pbZxqr3xDpqD5aA5WA2X2pqacWZbA9Vrbzy9yIWIiDQgF110EWvXrj08qfhYLVq0ODyM5Fg+Pq4c1S4iIvWFp9saJVgiIuI2R47Rr0hCQgIJCQnuCUZEROolT7c1ejtQRERERETESZRgiYiIiIiIOIkSLBERERERESdRgiUiIiIiIuIkWuRCRESO8vnnn/Poo4/SrFkzpk+fXqVrsrKymD17NldeeaWLoxMRaeAei3ByfXucW18V1ee2Rj1YIiJylHfeeYexY8dWucErKSkhKyuLTz755KRld+zYUdvwRESkHqjPbY0SLBGROuyDDz4gMTGRpKQkrrnmGsDxDt+wYcNITEzk9NNPZ+PGjQBcd9113H777fTv35+2bdvy66+/csMNN9ClSxeuu+46AJ544glmzpzJjTfeyF/+8hcKCwu5/vrr6dGjBz179jzcEI4bN46RI0cybNgwTj/9dB566CFmzJhBcnIyL7zwQqXxXnnllWRkZLj2iyIiIk6ltqZ6NERQRMQZfngItmU6t85mPeDspyo9vXTpUv75z38ye/ZsoqOjyc3NBeDuu+9mzJgxjBkzhnfffZd77rmHr7/+GoDdu3czZ84cJk2axMiRI5k1axZvv/02ffr0IS0tjUcffZRp06bx7LPPkpKSwnPPPYcxhszMTFasWMGZZ57JqlWrAFi0aBEZGRlERkby66+/8uyzz/Ldd99VGu+MGTOYOnUqTzzxBBMnTnTe10lERFxGbU31qQdLRKSOmjZtGpdeeinR0dEAREZGAjBnzpzD49OvueYaZs6cefia888/H2MMPXr0IDY2lh49euDj40O3bt3Iyso67h4zZ87k6quvBqBz5860bt36cKN3xhlnHL5nVTz22GMAfPnll2RmOjkZFRERl1BbU33qwRKpg/YX72fprqVs2beFMltGTEgM3aO60ziosadDa7hO0NPkTQIDAwHw8fE5/Pmh1yUlJdWqKzQ0tMplZ86cybRp0wCw1vLEE0/w+eefV+t+IiJSNzT0tkY9WCJ1yIrcFfx91t8ZMn4IN/x0A4/MeoRHZz/K7VNu55QJp3DjTzfy26bfsNZ6OlRxg2HDhvH555+za9cugMPDNgYOHMj48eMB+PjjjxkyZEiN7zFkyBA+/vhjAFatWsXGjRvp1KnTceXCw8PJz8+vtJ5D7yge8sUXX7BkyZIaxyUiIu6htqb61IMlUgfsL97PC6kvMH7leIL9grmw/YWc1vI0Wjdqja+PL1v2bWHBtgV8s+Yb7pp2F0NaDOGxgY/RNKSpp0MXF+rWrRsPP/wwp556Kr6+vvTs2ZNx48bx8ssvc/311/PMM88QExPDe++9V+N73HHHHdx+++306NEDPz8/xo0bd9S7kYckJibi6+tLUlIS1113Hffff//hc7NmzWLq1KlHlT/0zuJnn31W49hERBokNy+rrram+kxde6c7JSXFLly40NNhiLjN+j3ruWvqXWzK38RVXa7i9uTbaRTQqMKyxWXFTFgxgf8t+h8BvgE8c+ozDGw+0M0RNxzLly+nS5cung7D651xxhlMmTLluOOHJjR369atxnVX9D0wxqRaa1NqXGk5tTfeIeGh7z0dglfIeupcT4cgHqK2pmpc2dZA9dob9WCJeLHlu5Zz25TbAHjnrHfo06zPCcv7+/hzdderGdxiMA/89gB3Tr2T/57yX85ofYY7whU5TllZGY899hj/+Mc/KjwfEeHkDTNFRKTB8ba2RgmWiJdambuSG366gbCAMMaeMZaEiIQqX5sQkcB7Z73HnVPv5M+//ZnnTn2O4a2Huy5YkUr4+PgwaNAgT4chIiL1mLe1NVrkQsQL7Tywk7un3U2IXwgfjPigWsnVIRGBEbx1xlt0j+7O32b+jWW7ljk/UBERERE5ihIsES9TXFrMfdPvY3fhbl4a9hJxYXE1rivEP4T/Df0fEYER3D3tbnL25zgxUhERERE5lhIsES/zevrrpOek8+TgJ+kWXbsJmQDRwdG8MuwV9h7cy6OzH9US7iIiIiIupARLxIuk56TzzpJ3uLD9hYxIGOG0ejtFduK+3vcxc/NMvlj9hdPqFREREZGjaZELES9RWFLIIzMfITYklgf7POj0+q/ofAXTNk7jmQXP0D+uP/Hh8U6/h3ivRx99lFNOOYXhw7XYiYjUTT3e7+HpEDzixa4vUraz7PDr0d+Pdmr9mWMynVaX2hoH9WCJeIlxS8eRtTeLxwc+TlhAmNPr9zE+PDnoSSyWZxc+6/T6xXuVlpbyxBNPOLXBy8nRfD4REfmD2po/KMES8QLbC7bz7pJ3OaP1GQxoPsBl92ke1pybetzE1I1Tmb91vsvuI+6RlZVF586dueqqq+jSpQuXXHIJ+/fvByAhIYEHH3yQXr168fnnn3PdddcxceJEABYsWMDAgQNJSkqib9++5OfnU1payl/+8hf69OlDYmIib7755gnv/eCDD/Ltt9+6/BlFRMSz1NZUn4YIiniBFxe9SGlZKQ/0fsDl97q267V8seoLnl7wNJ+d9xm+Pr4uv2dD8Pi3S1m2Za9T6+zavBH/OP/EC52sXLmSd955h0GDBnHDDTfw2muv8ec//xmAqKgoFi1aBMCPP/4IQFFREZdffjkTJkygT58+7N27l+DgYN555x0iIiJYsGABBw8eZNCgQZx55pm0adPmuHuuX7+eDz/8kMzMTM4//3ynPrOIiHgftTXVox4sEQ9btmsZ3637jjHdxrhlXlSQXxB/SvkTq3avYtLaSS6/n7hWy5YtD2+uePXVVzNz5szD5y6//PLjyq9cuZK4uDj69OkDQKNGjfDz8+Pnn3/mgw8+IDk5mX79+rFr1y5Wr15d4T3/+c9/UlJSwsKFC/nuu+9c8FQiIuJN1NZUj3qwRDzs9fTXCQ8I5/ru17vtnme0PoNuUd14K+Mtzmt3Hv4+/m67d311sp4mVzHGVPo6NDS0yvVYa3n55Zc566yzTlhu/fr1fPDBB4dfP/HEE5x33nlVvo+IiNQ9amuqRz1YIh60fNdyft30K9d0vYbwgHC33dcYw21Jt5G9L5vJ6ya77b7ifBs3bmTOnDkAfPLJJwwePPiE5Tt16sTWrVtZsGABAPn5+ZSUlHDWWWfx+uuvU1xcDMCqVasoKCg47vp//etflJSUHH69YMECvv/+e2c9joiIeCG1NdWjHiwRD3oz403C/cO5qstVbr/3qfGn0iWyC29lvMW5bc/Fz0f/HdRFnTp14tVXX+WGG26ga9eu3H777ScsHxAQwIQJE7j77rs5cOAAwcHBTJkyhZtuuomsrCx69eqFtZaYmBi+/vrro67Nyso66h3FQx5//HHOPfdcZz6WiIhUwpnLqleV2prq0V9UIh6yZvcapm6cym1Jt9EooJHb72+M4dakW7lv+n38lPUT57atG/9pydH8/Pz46KOPjjuelZV11Otx48Yd/rxPnz7MnTv3uGv+/e9/8+9//7vSe/3rX/86/K7jkRYsWMDkyZM555xzqh64iIjUGWprqkcJloiHfLT8IwJ9A7my85Uei2Foy6EkNErgo2UfcU6bc44bYy1ypJtvvpkxY8ZUeC4uLs7N0YiISH1UH9oaJVgiHpBXmMd3677jvLbn0SSoicfi8DE+XNXlKv4171+k56ST3DTZY7FI9SUkJLBkyRK33a9v375uu5eIiHgHtTXVp0UuRDxg4uqJHCw9yJVdPNd7dcjIdiMJ9w/no+XHd/3LyVlrPR1Cg6WvvYg0BBar/+88rLpffyVYIm5WXFbM+BXj6RfXj45NOno6HEL8QxjVYRRTNkxhW8E2T4dTpwQFBbFr1y41fB5grWXXrl0EBQV5OhQREZfadGATRflFams8pCbtjYYIirjZ79m/s33/dv7W72+eDuWwK7pcwQfLPuCL1V9wZ/Kdng6nzoiPjyc7O5ucnBxPh9IgBQUFER/v+s25RUQ8aezGsdzMzbQMbonB4JOj/hF3q257owRLxM2+Wv0VMcExnBJ/iqdDOaxFWAv6x/Xn6zVfc1vibfj6+Ho6pDrB39+fNm3aeDoMERGpx/JL83l+/fOHX3timXapHqXAIm60Y/8OZmyewch2I71u36lRHUaxrWAb87bO83QoIiIiInWWEiwRN5q0dhJltoyLOlzk6VCOM6zVMCICI/hyzZeeDkVERESkzlKCJeIm1lq+Wv0VvWN707pRa0+Hc5wA3wDOb3s+0zZOI68wz9PhiIiIiNRJSrBE3CQtJ42N+Ru5qL339V4dcmH7CykuK2by+smeDkVERESkTlKCJeIm36/7nkDfQIa3Hu7pUCrVKbITHZp04If1P3g6FBEREZE6SQmWiBuUlJXwy4ZfODX+VEL9Qz0dzgmd0+Yc0nLS2LJvi6dDEREREalzlGCJuMG8rfPILczlnDbneDqUkxqRMAJAvVgiIiIiNaAES8QNJq+fTJh/GIPjB3s6lJOKD48nMSZR87BEREREasClCZYxZoQxZqUxZo0x5qETlLvYGGONMSmujEfEEw6WHmTqxqkMbz2cQN9AT4dTJee0OYdVu1exNm+tp0MRERERqVNclmAZY3yBV4Gzga7AFcaYrhWUCwfuBbS7qdRLszfPpqC44PDQu7rgrISzMBh+zvrZ06GIiIiI1Cmu7MHqC6yx1q6z1hYB44ELKij3JPA0UOjCWEQ8ZsrGKYQHhNO3WV9Ph1Jl0cHRJDdNZurGqZ4ORURERKROcWWC1QLYdMTr7PJjhxljegEtrbXfn6giY8wtxpiFxpiFOTk5zo9UxEWKy4r5Lfs3To0/FX9ff0+HUy2ntzqdlbtXsil/08kLi9QTam9ERKS2PLbIhTHGB3ge+NPJylpr37LWplhrU2JiYlwfnIiTpG5PZc/BPQxv5b17X1Xm9FanAzBt4zQPRyLiPmpvRESktlyZYG0GWh7xOr782CHhQHfgV2NMFtAfmKSFLqQ+mbphKkG+QQxsMdDToVRbfHg8nSM7M2XDFE+HIiIiIlJnuDLBWgB0MMa0McYEAKOBSYdOWmv3WGujrbUJ1toEYC4w0lq70IUxibhNmS1j2qZpDGoxiGC/YE+HUyPDWg0jPSednP0aKiUiIiJSFS5LsKy1JcBdwE/AcuAza+1SY8wTxpiRrrqviLdYvms5O/bvODzUri46vdXpWCy/Zv/q6VBERERE6gQ/V1ZurZ0MTD7m2KOVlD3NlbGIuNvvm3/HYBjcwvs3F65Mh8YdiAuNY2b2TC7teKmnwxERERHxeh5b5EKkvpuZPZMeMT1oEtTE06HUmDGGIS2GMHfrXIpKizwdjoiIiIjXU4Il4gK5hblk7sys071XhwxuMZj9JftZtGORp0MRERER8XpKsERcYNbmWVgsp7Q4xdOh1Fq/uH74+/gzM3ump0MRERER8XpKsERcYObmmUQGRdIlqounQ6m1EP8QUmJTmLF5hqdDEREREfF6SrBEnKy0rJRZW2YxuMVgfEz9+BUbEj+EdXvWsXnf5pMXFhEREWnA6sdffyJeJHNnJnsO7mFI/BBPh+I0Q1o4nkXDBEVEREROTAmWiJPN2DwDH+PDgLgBng7FaVo3ak18WLyGCYqIiIichBIsESebkT2D5JhkIgIjPB2K0xhjGBI/hHlb53Gw9KCnwxERERHxWkqwRJxo54GdLM9dXq+GBx4ypMUQCksLWbhtoadDEREREfFaSrBEnGju1rkADGhef4YHHpLSLAV/H//DzygiIiIix1OCJeJE87bOo1FAIzo36ezpUJwu2C+YpJgk5m2d5+lQRERERLyWEiwRJ7HWMm/rPPo264uvj6+nw3GJfnH9WJG7grzCPE+HIiIiIuKVlGCJOEl2fjZbC7bSL66fe25YWgKFe2HfDihxz8IT/eP6Y7Es2L7ALfcTERERqWv8PB2ASH0xd5tjbpJLEixrYctiWDkZtqbDtkzI33p0mdAYaJIArQdBm1Mc//oHOTWMbtHdCPELYd7WeZzR+gyn1i0iIiJSHyjBEnGSeVvn0TSkKQmNEpxX6YHdMO8tSPsY8jaA8YWYztDmVIhsCwEh4BvoKLc3G3JWwZxXYNaLEBwJPa+ClBscZZ3A38eflGYpmoclIiIiUgklWCJOUGbLmL91PkPih2CMqX2FhXth5gswfywU5UPboXDKX6DzuRASeeJrD+6DDbNg8Ucw5zWY/Yoj0Rr2dwhvVuvQ+jXrx+/Zv7OtYBvNQmtfn4iIiEh9ogRLxAlW717N7oO7nTM8cOUP8N0DjiGA3S6EIX+GZt2rfn1gGHQ8y/GxdyvMfhnmvwVLvoLTHoQBd4NPzadfHnrGeVvncUH7C2pcj4iIiEh9pEUuRJzg0N5QfZv1rXklB/fBFzfDp6MhuAncNBUuHVe95OpYjeJgxL/hznnQ9lT45VH48ALYu6XGVXZo0oEmgU00TFBERESkAkqwRJxg3tZ5JDRKqPmQudx18M4ZsGQinPZXuOVXiO/tvACj2sHoT2DkK5C9EF4fBOt+q1FVPsaHvnF9mbd1HtZa58UoIiIiUg8owRKppeKyYlK3p9Z8eGDWLHhrqKNX6aqJcNpD4Bfg3CABjIFe18Ctv0NYLHx0MWR8XqOq+sX1Y8eBHazfu97JQYqIiIjUbUqwRGpp2a5l7C/ZX7PhgWunORKdsFi4ZTq0P935AR4rugPc8CO07Adf3gSz/lftKvo36w/Agq3aD0tERETkSEqwRGopdXsqAL1jqzmkb+WP8MloiGoP10922lLqVRLcGK75ErqNcszLmv1KtS6PD4+naXBTUnekuiY+ERERkTpKqwiK1FLq9lTaRLQhKjiq6het/x0mXA2x3eCar06+9Lor+AXCqLFgS+HnhyEgFFKur9Klxhh6x/YmdXsq1lrnLE0vIiIiUg+oB0ukFkrLSlm8fXH1eq+2L4PxVzt6rK792jPJ1SG+fjDqbehwJnx3Pyz5ssqX9o7tzY79O8jel+3CAEVERETqFiVYIrWwOm81+cX5VU+w9m6Fjy8F/2C4eqJjOXZP8wuAyz6AVv3h6ztgy+IqXXbomQ8NkRQRERERJVgitXIouUiJTTl54ZIimHAVFObBVZ9D41auDa46/IPhsg8hNBrGXwX52096SdvGbWkc2FgJloiIiMgRlGCJ1ELq9lRahLWo2v5XPz8Cm1PhwtchLtH1wVVXWIxjr6wDux3zw0qKTljcx/jQq2kvJVgiIiIiR1CCJVJD1lpSt6dWbXhg5kSY/yYMuAu6jnR9cDUVlwgXvArZ8+HXf5+0eO/Y3mzK38T2gpP3eImIiIg0BEqwRGpo/d715BbmnjzB2rUWJt3j2Hdq+GNuia1Wuo+CXmNg5ouw7rcTFu3dzPHsi3YsckNgIiIiIt5PCZZIDVVp/6uyUsfCET5+cMm74OvvpuhqacR/HPtzfXUr7M+ttFinJp0I9Q/VMEERERGRckqwRGoodXsq0cHRtAo/wWIVc1+DTXPh7KchIt59wdVWQChc/DYU7ITvH6i0mJ+PH8lNk5VgiYiIiJRTgiVSA9ZaFm5bSO/Y3pVvspuzEqY+CZ3OgaTR7g3QGZonw2kPwtKvYMXkSoulxKawJm8Nuwt3uy82ERERES+lBEukBrYUbGH7/u30atqr4gJlZfDNXRAQAue9CJUlYd5u4L3QtCt8/yco3FthkUNDJDUPS0REREQJlkiNpO9IB6Bn054VF0j7yLES31n/hvBYN0bmZH4BMPJlyN8KUx+vsEjXqK74+/iTtiPNvbGJiIiIeCElWCI1kJ6TTrBfMB2adDj+5P5c+OUf0GoAJF3h/uCcLT4F+t0KC96G7IXHnQ70DaRbVDclWCIiIiIowRKpkYycDLpFdcPPx+/4k1Mfh8I9cO5zdXdo4LGGPQJhsfDDg47hj8dIbprM0l1LKSo98ebEIiIiIvWdEiyRaiosKWRF7gqSYpKOP7k5FVLfh363QWw39wfnKoHhcPo/YPNCyPzsuNPJMckUlxWzbNcyDwQnIiIi4j2UYIlU0/Lc5ZTYEhJjEo8+YS38/HcIjYbTHvJMcK6UdAU07wlTHoOD+44+1dSRbGqYoIiIiDR0SrBEqunQAhfH9WCt/AE2zHIkV0GNPBCZi/n4wNn/dSx4MfOFo05FB0cTHxZPWk6aZ2ITERER8RJKsESqKWNnBvFh8UQFR/1xsLQEpvwDotpDrzGeC87VWvaF7pfAnFchf9tRp3o27UnajjSstR4KTkRERMTzlGCJVIO1lvQd6ccPD1z8AexcBcMfB19/zwTnLsMehrJi+P2Zow4nN01mV+EusvdleygwEREREc9TgiVSDdv3b2fHgR1HDw8s2g+/PuVYlr3zuZ4Lzl0i20KvayF1HOSuP3z40NdE87BERESkIVOCJVINh+YYHZVgLXwX9m2H0x+tP8uyn8wp/wc+fo7Eslz7xu0J8w9TgiUiIiINmksTLGPMCGPMSmPMGmPMccuqGWNuM8ZkGmPSjDEzjTFdXRmPSG1l5GQQ6BtIx8iOjgNFBTDrRWhzKrQe6NHY3KpRHPS9BTImwHbH0uy+Pr4kxiRqoQsRERFp0FyWYBljfIFXgbOBrsAVFSRQn1hre1hrk4H/As+7Kh4RZ0jPSadbVDf8fcrnWS14BwpyYOjfPBuYJwy+HwJCYcazhw8lxySzevdq9hXtO8GFIiIiIvWXK3uw+gJrrLXrrLVFwHjggiMLWGv3HvEyFNDyY+K1ikqLWL5r+R/DA4sKYNb/oO1QaNXfs8F5Qkgk9LkJlnwJO1cDjv2wLJaMnRkeDk5ERETEM1yZYLUANh3xOrv82FGMMXcaY9bi6MG6p6KKjDG3GGMWGmMW5uTkuCRYkZNZnruc4rLiP1YQXPAO7N/ZMHuvDhlwF/gFHd4XKzE6EYPRPCyps9TeiIhIbXl8kQtr7avW2nbAg8AjlZR5y1qbYq1NiYmJcW+AIuUObTCcGJMIJQcde0G1OdWxN1RDFRYDKddD+njYvYGwgDA6NOmgBEvqLLU3IiJSW65MsDYDLY94HV9+rDLjgQtdGI9IrWTszCAuNI6mIU0dizvs2waD7/N0WJ438G7w8XUs9oFjw+GMnRmUlpV6Ni4RERERD3BlgrUA6GCMaWOMCQBGA5OOLGCM6XDEy3OB1S6MR6RW0nPSHfOvykodc6/ikhzzrxq6Rs0h+SpY/BHkbycpJomC4gLW5K3xdGQiIiIiblelBMsY86Ux5lxjTJUTMmttCXAX8BOwHPjMWrvUGPOEMWZkebG7jDFLjTFpwAPAmOqFL+Ie2wu2s61gmyPBWvEd7FrjWEWvoex7dTID74bSYlgwluSmyYAjIRURERFpaKqaML0GXAmsNsY8ZYzpVJWLrLWTrbUdrbXtrLX/Kj/2qLV2Uvnn91pru1lrk621Q621S2v0FCIudmhVvMToHjDzRYhsC11GnviihiSqHXQ+Fxa8TXxAEyKDIpVgiYiISINUpQTLWjvFWnsV0AvIAqYYY2YbY643xvi7MkARb5CRk0GATwBdC/bClkWO1fN8fD0dlncZeA8c2I1J/5TEmEQycrRUu4iIiDQ8VR7yZ4yJAq4DbgIWA//DkXD94pLIRLxIek46XaK64LdgLAQ1hqQrPB2S92nVD+L7wJxXSI7uQdbeLPIK8zwdlYiIiIhbVXUO1lfADCAEON9aO9JaO8FaezcQ5soARTytuLSYZbuWMTgsAZZ/B73HQECIp8PyTgPvht1ZnLovH0AbDouIiEiDU9UerLHW2q7W2v9Ya7cCGGMCAay1KS6LTsQLrNy9koOlBzlzx0bAQp+bPB2S9+p8HjRuRZsVv+BrfDUPS0RERBqcqiZY/6zg2BxnBiLirdJz0gkqKyNhza+HEwiphI8v9LkJ341zOD0oTgmWiIiINDgnTLCMMc2MMb2BYGNMT2NMr/KP03AMFxSp99Jz0hld5ItP4R7od5unw/F+Pa8BvyCuzC8gMydTGw6LiIhIg+J3kvNn4VjYIh54/ojj+cDfXBSTiFfJ2JHOe3v2QLMe0Hqgp8PxfiGR0P0SkpZ8jk+LGNbuWUvHJh09HZWIiIiIW5wwwbLWvg+8b4y52Fr7hZtiEvEaOw/sJH7nOuL258EZ/9LGwlXV9yb80j5iZH4B6TnpSrBERESkwTjZEMGryz9NMMY8cOyHG+IT8aj0nHSu2ptPSVAEdL/E0+HUHc17YlukcNW+/WRsT/N0NCIiIiJuc7JFLkLL/w0Dwiv4EKnX1m2cwSn7D0Dv68A/yNPh1Cmm7y20KjqIyfrN06GIiIiIuM3Jhgi+Wf7v4+4JR8S7xCz/AQP4ptzg6VDqnm4XcmDy/QzduoY9B/cQERjh6YhEREREXK6qGw3/1xjTyBjjb4yZaozJOWL4oEi9VFJSyIBta8iKbgtNEjwdTt3jF8juriM5Zf8BVq77xdPRiIiIiLhFVffBOtNauxc4D8gC2gN/cVVQIt5gS9r7xJaWkNf9Qk+HUmc1GeSYqmkWf+ThSERERETco6oJ1qGhhOcCn1tr97goHhGv4bvoQ3J8fWjW8zpPh1JnBUd3JK1RNO2z5kJpiafDEREREXG5qiZY3xljVgC9ganGmBig0HVhiXjYnmzitizhpyYxxDVq5elo6rS1bQfRpOgAZWt+9nQoIiIiIi53so2GAbDWPmSM+S+wx1pbaowpAC5wbWgiHrToQ8Cyru0QjAf3viosLmVtzj5Wb9/Hlj0HyMk/SE7+QXbvL6KopIziUktpmcXXxxAe5Ed4kB+Ngvxp3jiYVpEhtIwMoU10KJGhAR57hqCuF7Az81uC5r1BWKdzPBaHiIiIiDtUKcEq1xnHflhHXvOBk+MR8bzSEsoWjWN2cBDxrQa57bbWWjbm7mfuul3MW5dL2qY8snYVUGb/KBMW6EfT8ECahAYQ4OtDkL/B39eH4tIy8gtL2LqnkD0HisnJP3hU3fFNgklq2Zjk+Mb0bxtFt+aN8PFxT+KYGNubb8LCuH79DMjfBuHN3HJfEREREU+oUoJljPkQaAekAaXlhy1KsKQ+WvMLPvnb+LxpNNfGJLn0VqVlloVZufywZBs/L93Glj2OkbdRoQH0bt2E85Ka0zE2jI6x4cQ3CSYkoGrviRQWl5K9+wCbcvezans+Gdl7SNuYx/cZWwGIDgvk1I4xDOvclGGdmxIc4OuyZ2zdqDW/RDXjxj2rIO1jGPInl91LRERExNOq2oOVAnS11tqTlhSp61LfpyAwjNmh4TwV1dUlt1izI5+P5m7ku4yt7Nx3kAA/H07tGMPtQ9szoG0k7WLCajU0Mcjfl/ZNw2jfNIyhnZsePr4jv5CZq3fy68ocpizfzheLsgkP9OOcHnFc3DuePglNnD4k0hhDZPM+LNm+g+6LPoRB94NPVad/ioiIiNQtVU2wlgDNgK0ujEXE8/K3w+qf+S2uA22jEgj2C3Za1SWlZfy4dBsfztnAvPW5+PsahneJ5ZwecQzt3JSwwOqM2K2ZpuFBjOoVz6he8ZSWWeat38WXizbzbcYWJizcRNuYUG4a3JZRvVoQ5O+8Xq2kmCQ+CvmRp3LWQ9YMaHuq0+oWERER8SZV/YsuGlhmjJkPHJ7cYa0d6ZKoRDwlYzzYUt7zP0hPJw0PLC4t48tF2bw6fS0bc/cT3ySY/xvRictSWhIdFuiUe9SEr49hYLtoBraL5okLuvFD5jbGzc7ib19l8tzPK7lmQGuuH9iGiBD/Wt8rqWkSY0OCKQkIw2/RB0qwREREpN6qaoL1mCuDEPEK1sLijznQrAcrfPYwJiaxVtWVllkmpm7i5WlryN59gB4tInjrmt4M7xLrtgUmqiokwI+Le8czqlcL5q3PZezv63hxymrenbmeO4a257qBCbXq0eoe1Z0iH1+Wt+hBj+WTYH8uhEQ68QlEREREvENVl2n/zRjTGuhgrZ1ijAkBXDcrXsQTNqfCzpUs7XMN7PyNpFr0YM1dt4vHv13G8q17SYqP4IkLujG0U1OPLvleFcYY+reNon/bKJZv3ct/f1zBUz+sYNysLB44oyOX9I6vUXIYFhBG+ybt+abUnx6lRbDkC+h7swueQERERMSzqjTT3BhzMzAReLP8UAvgaxfFJOIZiz8Cv2AmhwYTGRRJfFh8tavYkneAOz9exOi35rL3QDGvXtmLr+8cxLDOsV6fXB2rS1wj3ru+LxNu6U9c4yD+74sMLn1zDiu35deovqSYJCYf2ISN7QZpnzg5WhERERHvUNWlvO4EBgF7Aay1q4GmJ7xCpC4pPgBLvoSuI1mwewWJMYnVSoistXw6fyNnvvA7U1ds5/7hHZnywKmcmxhX5xKrY/VrG8WXtw/kmUsSWZezj3NfmsFTP6zgQFHpyS8+QmJ0IvnF+eR2Ogu2LIKclS6KWERERMRzqppgHbTWFh16Ub7ZsJZsl/pj+XdwcA/7ul1I1t6sag0P3Jx3gGvfnc9fv8ykR4sIfrn/VO4d3sGle0u5mzGGS1NaMvVPp3Fhzxa88dtazn15Bks276lyHUlNHV/TedGtwfiqF0tERETqpaomWL8ZY/4GBBtjzgA+B751XVgibpb2MTRuxeKQUIAqJ1jfZWxhxAu/k7phN09e2J2Pb+pHy8gQV0bqUZGhATx7aRIf39SPgoMlXPTaLN78bS1lZSd/vyWhUQKNAhoxf18WtB8OGROgrHq9YCIiIiLerqoJ1kNADpAJ3ApMBh5xVVAibpW3Cdb9CklXkr4zEx/jQ7eobie85GBJKY9+s4S7PllMh9gwfrrvFK7p39rrVgd0lUHto/nx3lMY3iWW//ywgqvfmUdO/sETXuNjfOgR04P0nHRIvgLytzq+7iIiIiL1SJUSLGttGY5FLe6w1l5irR1rrdUQQakf0scDFpKvICMng45NOhLiX3kv1MZd+7nk9Tl8MGcDNw9pw4RbB9TrXqvKNAkN4LWrevH0xT1YtHE35788k7RNeSe8JikmibV5a8lvMxiCIiD9U/cEKyIiIuImJ0ywjMNjxpidwEpgpTEmxxjzqHvCE3Exax2bC7ceTFnjVmTuzDzh8MA5a3dx/isz2bCrgLHXpvDwuV3x961qR3D9Y4zh8j6t+OL2gfj5Gi57Yw6fLdhUafmkmCQslsy81dD9Ysfct8K9boxYRERExLVO9pfh/ThWD+xjrY201kYC/YBBxpj7XR6diKttXgS71kDS5azLW8e+4n0kVrLB8IQFG7nmnXnEhAfy7d2DOaNrrJuD9V7dmkfw7V2D6dsmkv/7IoN/fLOE0grmZfWI7oHBOIYJJl0JJQdg2dfuD1hERETERU6WYF0DXGGtXX/ogLV2HXA1cK0rAxNxi4wJ4BsIXS9w/NHP8QtclJZZ/jN5OQ9+kcmAdlF8ecdAWkeFeiJar9YkNIBx1/fhpsFteH/OBm77KPW4pdzDA8Jp17gdGTkZEJ8CUe0hTcMERUREpP44WYLlb63deexBa20O4O+akETcpLQYlnwBnc6GoAgydmbQOLAxrcJbHS5SVFLGveMX8+bv67h2QGveu64PjYL0o18ZP18fHjmvK4+P7MaU5du58u255BYUHVUmKSaJjJwMyrCQdAVsnA256yupUURERKRuOVmCVVTDcyLeb+002L8TkkYDkL4j/agNhvcXlXDzBwv5LmMrfz27M09c0B2/BjzfqjrGDEzg9at6s2zLXi5+fTabcvcfPpcYk8jeor1k7c0q/9qb8oVGREREROq+k/21mGSM2VvBRz7Qwx0BirhM+ngIjoR2p7O3aC9r96wlMdox/2rP/mKueWc+M1bn8PTFPbj11HYeDrbuGdG9GZ/c3I/cgiIuf3MO63cWAH8MwczIyYCIeGhzimM1wbIyT4YrIiIi4hQnTLCstb7W2kYVfIRbazVOSuquwr2wcjJ0HwV+ASzJWQJAUtMkR0Lw1hwys/fw6pW9uLxPq5NUJpXp3TqST2/uT2FJGZe/OYc1O/JpE9GGcP/ww3PeSL4S8jbAxjmeDVZERETECTTeSRqm5ZOgpBASy4cH5qRjMMQHd+Kqt+exfmcBb49J4ewecR4OtO7r2rwR42/pT5mFy9+cy8pt+/7YcBigy/ngH+pYLl9ERESkjlOCJQ1TxgSIbOtYyQ5I35lOQlhXbv1gCWtz9jH22hRO6Rjj4SDrj46x4Uy4tT9+voYrx86lRUAKa3avoaC4AAJCoetIWPoNFB/wdKgiIiIitaIESxqePZth/QxIvByMocyWkbZ1FZtXjWL19n28dU1vJVcu0C4mjAm3DMDf14cvf29BaVEkmTszHScTL4eDe2DlD54NUkRERKSWlGBJw5P5OWChx6UALN+5jh3rLiEvP4Q3r+nNaZ2aeja+eiwhOpSPbuoH1pf9G25ixnrH3DfanALhcY6eRREREZE6TAmWNCzWOv6Ij+8LUe0oLi3jzxOWU3agJf+4sCVDOyu5crWOseF8dGN/jA1l3JRG7MgvBB9fSLwM1kyBfTmeDlFERESkxpRgScOyfQnsWAaJl1FWZvnz5+ksz/ahScsfuaZPoqejazC6t4jgzP6r2V/oz/XvLWDfwRLHgiNlJY7Nn0VERETqKCVY0rCkjwcfP2y3UTzx3TK+SdtCs5bzGdiZwxsMi3uc0akdQS0+YvnWvdz+USrF0Z2hWQ+tJigiIiJ1mhIsaTjKSiFzInQ4k7dT9zBudhZX92/OvtAvSY5J9nR0DU5iTCJ+Yau4fEgZM1bv5MEvMrA9RsOWxZCzytPhiYiIiNSISxMsY8wIY8xKY8waY8xDFZx/wBizzBiTYYyZaoxp7cp4pIFb/xvs28aPjUfz7x+Wc06PZpzROx9jILlpsqeja3DaNW5HmH8YIU3SuG94B75ctJnncgeC8VEvloiIiNRZLkuwjDG+wKvA2UBX4ApjTNdjii0GUqy1icBE4L+uikeEjM9I903kvtkBJMU35vnLksnYmY6v8aVbVDdPR9fg+BgfekQ7Nhy+9/QOjO7TkldmbeWzyFsh4zMoK/N0iCIiIiLV5soerL7AGmvtOmttETAeuODIAtba6dba/eUv5wLxLoxHGrKiArKXzOTGovuJDgvk7TEpBPn7kr4jnU6RnQjxD/F0hA1SYkwiq/NWc6DkAE9e2J3B7aN5eOtgFuwOgQ2zPB2eiIiISLW5MsFqAWw64nV2+bHK3AhUuMuoMeYWY8xCY8zCnBwt4SzVV5A5mZv238lBE8i46/sQHRZISVkJGTszSIpJ8nR4DVZSTBJltowlO5fg7+vDq1f2omWTEG4tfoBN87/xdHjSAKm9ERGR2vKKRS6MMVcDKcAzFZ231r5lrU2x1qbExMS4Nzip86y1/OWn7ayy8bx2VR/aNw0HYPVuR8+JFrjwnMQYx9L46TnpAESE+PP2dX0p8QnipvSO7Mvf68nwpAFSeyMiIrXlygRrM9DyiNfx5ceOYowZDjwMjLTWHnRhPNJAvf5zBpP3tuGhDpsZ0umPjYTTctIALXDhSRGBESQ0SiAjJ+PwsbYxYbw+Ipw1Zc24b9yvlJVZD0YoIiIiUj2uTLAWAB2MMW2MMQHAaGDSkQWMMT2BN3EkVztcGIs0UNNX7uCZ6ZsY6TOLm8879ahzaTvSaBrclLjQOA9FJ+AYJpiek461fyRSgwYN5dGwb5my2ZdXp6/xYHQiIiIi1eOyBMtaWwLcBfwELAc+s9YuNcY8YYwZWV7sGSAM+NwYk2aMmVRJdSLVtn5nAfd8upguATt4uuVcTGyXo86n56ST1DRJGwx7WFLTJHYf3M2m/COmbPr4cG2/FlzkO5Pnf1nFryv1/ouIiIjUDS6dg2WtnWyt7WitbWet/Vf5sUettZPKPx9urY211iaXf4w8cY0iVbPvYAm3fLAQP8p4k38RnHzJUedz9uewed9mzb/yAonRR8/DOsQkjebffm/TuVER945PY1Pu/oouFxEREfEqXrHIhYgzlZVZ/vRZGut2FvBK1xW09M2F7hcfVebQH/NJTbWCoKe1b9yeUP/Q4xIsmnYmuHlX3mj0HtZabv0wlcLiUs8EKSIiIlJFSrCk3hk7Yx0/Ld3OX0d0YtDmd6DdMAiPPapM2o40AnwC6BLZpZJaxF18fXzpHt39qIUuDksaTeudv/HiiGiWbd3Lw18tOWquloiIiIi3UYIl9crCrFz++9NKzunRjBvjN8OeTZA4+rhyaTlpdIvuRoBvgAeilGMlRieyavcq9hcfMwyw+yVgfBmWP4l7T+/AF4uy+XjeRs8EKSIiIlIFSrCk3sgtKOKuTxYT3ySYpy5OxGROgIAw6HzuUeWKSotYtmuZ5l95keSmyZTaUpbuWnr0ibAYaH86ZH7OvUPbMbRTDI9/u5T0TXkeiVNERETkZJRgSb1QVma5f0IauQVFvHplLxr5lsCySdD1AggIOars0l1LKS4rJilG86+8RWULXQCQNBr2bsZn40xeuDyZpuFB3PXpIvYWFrs5ShEREZGTU4Il9cLrv63lt1U5/P38rnRvEQErJ8PBvZB4+XFlU7enAtAztqe7w5RKNA5qTOtGrSueh9XpHAhsBOnjaRwSwEtX9GRLXiF//SJT87FERETE6yjBkjpv3rpdPPfzSs5LjOPqfq0cB9PHQ6MWkDDkuPKp21NpG9GWyKBIN0cqJ1LRhsMA+AdD15GwfBIU7ad36yb85axOfJ+5lU/maz6WiIiIeBclWFKn7dx3kLs/XUzrqFD+M6qHY9PgfTtgzVRIvAx8jv4RLy0rJW1HGr1ie3koYqlMUkwSuYW5ZO/LruDkFVC0D1Z8D8AtQ9pySscYHv92Gcu37nVzpCIiIiKVU4IldZa1lj9/ns6eA8W8emUvwoP8HSeWfAG2tMLVA1fnrWZf8T56NVWC5W0OzYlL25F2/MlWAyGiJWSMB8DHx/D8ZUk0Dvbnzk8WUXCwxI2RioiIiFROCZbUWR/M2cCvK3N45NwudG3e6I8T6Z9CXBI07XzcNYfmX6XEprgrTKmi9o3bE+4fzqIdi44/6ePj6JFcOw3ytwEQHRbI/0b3JGtnAX//ZomboxURERGpmBIsqZNWbc/nX5OXM6xzU67u3/qPEztWwNb0CnuvABZtX0RcaBxxYXFuilSqytfHl56xPVm4bWHFBRJHgy2DzImHDw1oF8U9p3fgy0WbmZhawdBCERERETdTgiV1TmFxKfd8uphGQX48fXGiY97VIRnjwfhCj0uOu85aS+r2VM2/8mK9Y3uTtTeLnQd2Hn8ypiM073V4mOAhdw/rQL82kfzjmyVk7SxwU6QiIiIiFVOCJXXOMz+tZMW2fJ65JImY8MA/TpSVQcZnjo1pw5oed93G/I3sKtyl+Vde7NDQzUNDOY+TNBq2ZcL2PzYk9vUxvHB5Mr4+hvsmpFFcWuaOUEVEREQqpARL6pQZq3N4Z+Z6xgxozdDOxyRRWTNg7+YK974Cx/BAcPSSiHfqEtWFYL/gyocJdr8YfPwcy/AfoXnjYP4zKpG0TXm8NHW1GyIVERERqZgSLKkzcguK+NNn6XRoGsZfz+lyfIGMCY4NaTufW+H1qdtTaRLYhLYRbV0cqdSUv48/yTHJpO6opAcrNBranwGZn0NZ6VGnzk2M49Le8bw6fQ3z1+e6IVoRERGR4ynBkjrBWsuDX2SQt7+YF0cnE+Tve3SBov2w7BvHhrT+wRXWkbo9lZ5Nex49Z0u8Tu/Y3qzevZq8wryKCyRdDvlbYf1vx536x8hutIwM4f4Jaew5UOzaQEVEREQqoARL6oTxCzbxy7Lt/N+ITnRrHnF8gRXfOzairWT1wB37d5C9L1sLXNQBKc0c87AqXK4doOPZEBgB6ROOOxUW6Mf/Rvdk295CHvl6CdZaV4YqIiIichwlWOL11uXs44lvlzG4fTQ3DGpTcaGM8Y6NaFsPqvD0gm0LgD/+eBfv1T26OwE+ASzcXsk8LP8g6HYhLP8Wio5fNTC5ZWPuH96Bb9O38NXiza4NVkREROQYSrDEqxWVlHHv+DQC/X147rIkfHwqGN63d6tjA9oelzo2pK3A/G3zCQ8Ip3OT4zcfFu8S6BtIYkxi5SsJgmM1weICWP5dhadvP609fRMiefSbpWzctd9FkYqIiIgcTwmWeLUXp6wic/MenhqVSGyjoIoLZYx3bECbfFWl9czfOp+U2BR8fXwrLSPeo3dsb1bkriC/KL/iAi37Q+NWkP5phad9fQzPX56EMXDfhMWUaOl2ERERcRMlWOK15q7bxeu/rWV0n5aM6N6s4kLWwuKPoNUAiG5fYZEt+7aQvS+bfnH9XBitOFNKsxTKbBmLdyyuuICPj2O+3frfHD2YFYhvEsK/LurBoo15vDRtjQujFREREfmDEizxSnsOFPPAhDQSokL5+3ldKy+4aT7sWnPi3qtt8wHo06yPs8MUF0mKScLfx5/5W+efoNBoR89l5ueVFhmZ1JxRvVrwyrTVpG7Q0u0iIiLiekqwxOtYa3n4q0x25B/kxcuTCQ30q7zw4g/BP9Sx6EEl5m+dT2RQJO0bV9zDJd4n2C+YpJgk5m2bV3mhqHbQIuW4TYeP9fjIbrRoEsy949PIL9TS7SIiIuJaSrDE63y1eDPfZWzl/jM6ktSyceUFiwpg6VfQ7SIIDK+wiLWW+dsc8698jH7c65L+cf1ZkbuC3YW7Ky+UNBp2LIVtmZUWCQ/y58XLk9mSd4B/TFrqgkhFRERE/qC/OMWrbMrdz6PfLKVvQiS3ndruxIWXfePY+6pn5cMDN+ZvZPv+7Zp/VQcd+p4dGuJZoe4Xg4//SXuxereO5O5hHfhy0WYmpW9xZpgiIiIiR1GCJV6jpLSM+yakYQw8f3kSvhUtyX6kxR9BZFvHAheV0Pyruqt7dHdC/UOZu3Vu5YVCIqHjWZAxAUqKTljf3cPa07NVYx7+KpPNeQecHK2IiIiIgxIs8RqvTl9L6obd/PPC7sQ3CTlx4V1rYcMsx+IWpvJEbP7W+TQNbkpCowTnBisu5+fjR0psCvO2nmAeFkCva6EgB1b9cOL6fH343+U9KSuzPDAhjdIy68RoRURERByUYIlXSN2wm5emreaini24ILnFyS9I+wSMDyRdUWkRay0Lti2gT1wfzAmSMPFe/eL6sSl/E1v2nWBYX/vh0KgFpL5/0vpaRYXw+AXdmbc+lzd/X+vESEVEREQclGCJx+07WML9E9KIiwji8Qu6nfyC0hJHgtVuGERUnoytzVvLrsJd9G3W14nRijv1j+sPcOJeLB9f6Hk1rJ0GuzectM6Le7Xg3B5xPP/zKjKy85wUqYiIiIiDEizxuMcmLSV7935evDyZRkH+J79g9c+QvwV6jTlhsVlbZgEwsPlAZ4QpHtC+cXuigqJOPA8LHAkWOOblnYQxhn9d1J2Y8EDuG5/G/qISJ0QqIiIi4qAESzzqu4wtTEzN5q6h7UlJiKzaRanvQVgz6HT2CYvN2jyLthFtaRbazAmRiicYY+gb15d5W+dh7QnmTDVuBe1PdyRYpSdPmBqHBPDcZUms31XAk98td2LEIiIi0tApwRKP2ZJ3gL99mUlyy8bcfXqHql2UtxFW/wK9rgHfynu7DpQcIHV7KoNaDHJStOIp/eP6s6twF2vy1py4YO/rHD2ba36pUr0D20Vzyylt+XT+Rn5auq32gYqIiIigBEs8pLTM8sBnjpXc/jc6GX/fKv4oHlrIoNe1Jy62PZWisiIGNVeCVdcdmoc1e8vsExfsOAJCm1ZpsYtD/nRGJ7q3aMRDX2SwY29hbcIUERERAZRgiYe89fs65q7L5bGR3WgdFVq1i0qLYfGH0OFMx5CwE5i1eRaBvoH0ju3thGjFk5qHNadtRFtmbp554oK+/o5Np1f/BHurtplwgJ8PL17ekwPFpfzp83TKtHS7iIiI1JISLHG7tE15PPfzSs7tEcclveOrfuHKH2Dfdki5/qRFZ2+ZTe/Y3gT5BdUiUvEWQ1oMIXV7KvuL95+4YK9rwZZVabGLQ9o3DeORc7syY/VO3pudVbtARUREpMFTgiVute9gCfeOX0xsoyD+PapH9fanSn0PGsU7erBOYFvBNtbtWafVA+uRIfFDKC4rPvmmw5Ftoe1pkDquSotdHHJVv1YM79KUp39YwfKte2sVq4iIiDRsSrDErR79egmbcvfzv9HJRARXYUn2Q3LXOfY56nWtY9+jE5i12bE8u+Zf1R+9mvYixC/k5MMEAfreAns3w8rJVa7fGMPTFyfSKNif+8anUVhcWotoRUREpCFTgiVu89XibL5cvJl7Tu9Q9SXZD0l9H4yvY/XAk5i1ZRaxIbG0a9yuhpGKt/H39ad/XH9mbJ5x4uXawbHYRURLmP9Wte4RFRbIs5cmsnJ7Pk/9sKIW0YqIiEhDpgRL3GLDrgIe+WoJfRKacNfQ9tW7uPgALPrAse9Vo+YnLFpSVsLcLXMZ1GJQ9YYfitcbHD+YrQVbWbdn3YkL+vhCnxshawZsX1ate5zWqSnXDUxg3Owsfl25oxbRioiISEOlBEtcrri0jHvGp+HrY3hxdE/8qrok+yGZn8OBXOh320mLpuekk1+cr/lX9dCQFkMAmJE94+SFe40BvyBYMLba93no7M50jA3jz59nsGvfwWpfLyIiIg2bEixxued/WUX6pjyevjiRFo2Dq3extTD3DYjtDgmDT1p8+sbp+Pn4af5VPdQstBkdmnSo2jyskEjofgmkj4cDedW6T5C/L/8b3ZO9B4p58IvMkw9JFBERETmCEixxqdlrdvLGb2u5om9Lzu4RV/0KsmbAjqWO3quTDPmz1jJ903T6NetHWEBYDSMWbza4xWBSd6RSUFxw8sJ9b4bi/ZD+abXv0yWuEQ+e3Zkpy7fzvpZuFxERkWpQgiUuk1tQxH0T0mgbHcrfz+tas0rmvgEhUdDj0pMWXb9nPRvzNzK05dCa3Uu83pAWQygpK2HOljknL9w8GeL7wvyxUFZW7XtdPzCB0zs35d+TV5CZvaf6wYqIiEiD5NIEyxgzwhiz0hizxhjzUAXnTzHGLDLGlBhjLnFlLOJeZWWWv3yeTt7+Yl6+ohchAX7VryR3nWOp7d7Xg//JNwyetmkaAKe1PK3695I6IblpMhGBEUzbOK1qF/S7FXLXOpb4ryYfH8OzlyYRHRbAnZ8sYm9hcbXrEBERkYbHZQmWMcYXeBU4G+gKXGGMObYbYyNwHfCJq+IQz3hrxjqmrtjB387pTNfmjWpWyfyx5SvC3VSl4tM3TadbVDdiQ2Nrdj/xev4+/pwWfxq/Zv9KcWkVEp4uIyGsGcx5pUb3axIawMtX9mRz3gH+qvlYIiIiUgWu7MHqC6yx1q6z1hYB44ELjixgrc2y1mYA1R+/I15r3rpdPPPTSs7tEceYgQk1q+RgPiz+CLpeCI1OPndr54GdZOZkanhgAzC89XDyi/JZsG3ByQv7BUD/22DddNiaXqP79W4dyV/O6sT3mVv5aO6GGtUhIiIiDYcrE6wWwKYjXmeXH6s2Y8wtxpiFxpiFOTk5TglOXCMn/yB3f7qYVpEhPHVxj5rvRZX2CRzcC/1vr1LxXzf9isUytJUSrPpuQPMBBPsFM2XjlKpd0Pt6CAiHWS/V+J63DGnLaZ1iePK75SzZrPlY9ZnaGxERqa06sciFtfYta22KtTYlJibG0+FIJUrLLPdNWMyeA8W8dlUvwoP8a1hRiWNIV3xfiE+p0iXTN02nRVgLOjTuULN7Sp0R6BvIKfGnMG3jNErLSk9+QXBjSLkOln4Fu2vWA+XjY3j+smQiQwO465NF5Gs+Vr2l9kZERGrLlQnWZqDlEa/jy49JPfW/qauZtWYXT17QnS5xNZx3BY4/hPM2wuD7q1R8f/F+5m6Zy9CWQ2veYyZ1yvBWw9lVuIv0nCoO++t3OxgfmPtaje8ZWT4fa9PuAzz4RYbmY4mIiEiFXJlgLQA6GGPaGGMCgNHAJBfeTzzo91U5vDxtNZf0jueyPi1PfkFlrIVZL0JMZ+g4omr3zv6dorIihrUaVvP7Sp0yJH4I/j7+VR8mGNHCsdT/og9gf26N79snIZIHR3RicuY23vx9XY3rERERkfrLZQmWtbYEuAv4CVgOfGatXWqMecIYMxLAGNPHGJMNXAq8aYxZ6qp4xHU25x3gvglpdGwazpMXdK9dZWumwPYlMOhe8Knaj+ePWT8SExxDr6a9andvqTNC/UMZ0HwAUzdMrXpP0sC7HRsPL3i7Vve+eUhbzk2M478/rmDm6p21qktERETqH5fOwbLWTrbWdrTWtrPW/qv82KPW2knlny+w1sZba0OttVHW2m6ujEec70BRKbd+uJDikjJeu7oXwQG+tatw5gvQKB66V21btILiAmZkz+DMhDPx9anlvaVOGd5qOFsKtrA8d3nVLojtCh3OgnlvQvGBGt/XGMN/L06kfdMw7v50Edm799e4LhEREal/6sQiF+KdrLU89GUGS7fs5cXRybSLCatdhRvnwoZZMOBOx/LaVTB903SKyoo4K+Gs2t1b6pyhLYfiZ/z4MevHql806F7YvxMWfVire4cG+vHmNSmUlFpu+yiVwuIqLLYhIiIiDYISLKmxsTPW8U3aFv50RkdO7+KEzX1/fQpCY6D3mCpf8tP6n4gNiSUpJqn295c6pXFQYwa2GMgP63+gzFZxK73WA6HVQEdPaXFhre7fJjqUF0cns2TzXh7+aokWvRARERFACZbU0G+rcnjqhxWc06MZdw5tX/sKN851bAY76F4ICK3SJXuL9jJryyzOSjgLH6Mf5Ybo3Dbnsq1gG4u2L6raBcbAaQ9B/hZYXLteLIDTu8Ry7+kd+GJRtjYhFhEREUAJltRA1s4C7v5kER1jw3nmkiTnLI1+qPcq5YYqX/JT1k8UlxVzdpuza39/qZNOa3kawX7BfL/++6pf1OYURy/WjOdr3YsFcO/pHRjWuSmPf7uM2Wu06IWIiEhDpwRLqmXfwRJu/mAhPj6GsdemEBroV/tKa9B7BfDt2m9pG9GWblFaG6WhCvEPYVirYfyc9TPFpVXc/NfJvVg+PoYXRyfTJjqU2z5KZc2OfbWuU0REROouJVhSZaVllvvGL2bdzgJevbIXLSNDal+ptTD9X9Xuvdq4dyOLdyxmZLuR2ly4gTunzTnsLdrL75t/r/pFh3uxnoOi2q8C2CjIn3ev60OAnw83jFtAbkFRresUERGRukkJllTZk98tY8ryHfzj/K4Mah/tnErXToP1v8OQP1Wr92rS2kkYDOe1Pc85cUidNbD5QKKDo/l6zddVv8gYGPYI5G+F+W86JY6WkSG8dW0K2/YWcuuHCzlYopUFRUREGiIlWFIl781az7jZWdw4uA3XDkhwTqVlZTDlH9C4dbV6r8psGd+t+47+cf2JDXXC6oVSp/n5+DGy3UhmZM8gZ39O1S9MGAQdR8CMF2B/rlNi6dWqCc9dmsSCrN089EWmVhYUERFpgJRgyUlNWbadJ79bxpldY/nbOV2cV/GSibAtE4b9HfwCq3zZgm0L2LxvMyPbj3ReLFKnXdT+IkptKd+s/aZ6F57+KBzcCzOfd1os5yc1589nduSrxZt5edoap9UrIiIidYMSLDmhtE153P3pYrq3iODF0cn4+jhpvlPJQZj2JDTrAd0vrtaln638jIjACM5ofYZzYpE6LyEigV5Ne/H1mq+r12sU2w2SroB5b0HeJqfFc+fQ9ozq1YLnf1nFl4uynVaviIiIeD8lWFKpNTvyuf69+cSEB/L2mBRCApywYuAh896EvI0w/HHwqfqP4c4DO5m2cRoXtruQQN+q93pJ/Teqwyg27N3Awu0Lq3fh0L85/p36hNNiMcbwn1E9GNguiv+bmMH0FTucVreIiIh4NyVYUqEteQe45p35+Pr48OGNfWkaHuS8yvO3w2//hQ5nQfvTq3XpV6u/osSWcEnHS5wXj9QLZyacSaOARoxfMb56FzZuCQPvhszPHFsGOEmgny9vXtObznHh3P5xKqkbnDPPS0RERLybEiw5Tm5BEde8M499hSW8f0MfWkdVfXW/Kpn6OJQUwoj/VOuy0rJSJq6aSL+4fiREJDg3Jqnzgv2CGdVhFFM3TmVbwbbqXTzkAQhvDj/8H5Q5b/W/8CB/xl3fl2aNgrj+vQWs3JbvtLpFRETEOynBkqPsLSzmuvfms2n3AcaOSaFb8wjn3iA7FdI+hgF3QlS7al36a/avbCnYwmUdL3NuTFJvXN7pcspsGZ+t/Kx6FwaEwplPwtZ0p2w+fKTosEA+vLEfQf6+XPPOPNbvLHBq/SIiIuJdlGDJYfmFxYx5dz7Lt+7ltSt70b9tlHNvUFYKk/8MYc3glD9X+/IPln5A89DmDGs1zLlxSb0RHx7PqS1P5YvVX3Cw9GD1Lu5+sWPz4alPOG3Z9kNaRobw0U39KCmzXDl2Lht31X5zYxEREfFOSrAEgIKDJVz/3gIysvfw8hW9GN7VBftLzR8LWxbBWf+CwPBqXZqZk8miHYu4uuvV+Pk4cbENqXeu6nIVuYW5TF43uXoXGgPnPAOFe+DnR5weV8fYcD66sR8Hiku5YuxcsncryRIREamPlGAJ+4tKuGHcAhZvyuOl0T0Z0b2Z82+St9HRM9DhzGovyw7w/rL3CfcPZ1SHUc6PTeqVfs360TmyM+8ueZfS6s6natYdBt3rGMa6drrTY+vavBEf3diP/MJirhg7ly15B5x+DxEREfEsJVgN3N7yYYELsnJ5/rIkzk2Mc/5NrIXvHnB8fu7zjp6CasjOz+aXDb9wScdLCPV38oIbUu8YY7ixx41k7c1i2qZp1a/glP+DqPbw7b1Q5Pxepu4tIvjwxn7kFRRz2Ztz2LBLc7JERETqEyVYDVhuQRFXjZ3H4o15vHxFLy5IbuGaG2VMgDW/wOmPOpbErqa3M9/Gz/hxVZerXBCc1EdntDqD1o1a83bm29XbeBjAPwjO/x/kbYBp/3RJfEktG/PJzf0pOFjCpW/MYfV2rS4oIiJSXyjBaqC27y3k8jfnsGp7PmOvTXFNzxU4hgZO/gu07A99b6725dn52Xyz5hsu6XgJsaEumBcm9ZKvjy/Xd7ueZbuWMXvL7OpXkDAY+twEc1+Fdb86PT6AHvERTLh1ABa47M05ZGbvccl9RERExL20WkADtC5nH9e9t4Bd+w4y7vq+DGjn5NUCDykrhS9vdQwRHPUm+PhWu4q3M9/Gx/hwQ/cbXBCg1GfntzuftzLe4uXFLzOw+UBMNYemcsaTsO43+Op2uH0WhEQ6PcaOseF8fusArnp7HleOncsb1/RmUPtop99HROqBx5y8bUpd1KaVpyMQqRL1YDUwC7JyGfX6bPYdLOHjm/u7LrkCmPUibJztWJmtSUK1L9+0d5N6r6TGAnwDuCP5DpbuWsqUjVNqUEEIXDwWCnbAd/c73ihwgYToUD6/bQBxjYMY8+58vkjNdsl9RERExD2UYDUg32ds5aq359EkJICv7hhIcsvGrrvZxrkw/d/Q7SJIGl2jKl5Y9AL+vv7c1OMmJwcnDcV5bc+jXUQ7Xlr0EiVlJdWvoHlPGPo3WPY1pL7n9PgO36ZxMJ/fNpC+bSL50+fp/G/K6urPHRMRERGvoASrAbDW8ur0Ndz5ySISW0Tw5e0DaR3lwtX48rfDZ2OgcSs478VqrxoIsGj7In7Z8As3dL+BmJAY58coDYKvjy9397ybrL1ZfLn6y5pVMug+aHc6/PAgZKc6Nb4jRQT7M+76vozq1YIXpqziT5+nU1hczWXmRURExOOUYNVzBQdLuPOTRTzz00rOT2rORzf1o0logOtuWFoMn1/n2Kz18o8guHG1qyizZTyz4BmahjRlTLcxTg9RGpZhrYaREpvCS4tfIq8wr/oV+PjCxW9DeDP47Foo2On0GA8J8PPhuUuTuH94R75ctJnL3pyjvbJERETqGCVY9dj6nQVc9NosflyyjYfP6cJLo5MJ8q/+QhNVZi38+FfHvKuRL0FstxpV89Xqr1iyawn39LyHYL9gJwcpDY0xhr/2+yv7ivbx8uKXa1ZJSCRc9iEU5DjeQCgpcmqMRzLGcO/wDoy9NoV1OQWc//JM5qzd5bL7iYiIiHMpwaqnJmduZeQrM8nJP8gHN/Tj5lPaVn8Vteqa8yosGAsD7oLEy2pUxc4DO3ku9TlSYlMY2W6kkwOUhqpjk45c0fkKPl/1OUt3Lq1ZJc2TYeTLkDUDJt3tskUvDjmjayxf3zmIxiH+XP3OPF77dQ1lZZqXJSIi4u2UYNUz+4tKeHBiBnd8vIi2MWFMumswgzu4YdnnpV/Bzw9D1wscy1vX0NPzn6awpJBHBzzq+oRQGpQ7ku8gJjiGR2Y9QlFpDXugki6HoY9AxnjHIi4u1r5pGF/fOYgR3Zrx3x9Xcs2789i+t9Dl9xUREZGaU4JVjyzZvIfzXp7JZ6mbuOO0dky8bQAtI0Ncf+N1vzr2u2rZHy56C3xq9mP1y4Zf+DHrR25OvJk2EW2cG6M0eOEB4Tw28DHW5K3htbTXal7RKX+GntfA7/+F+WOdF2AlwoP8eeXKnjw1qgeLNuQx4sXf+WXZdpffV0RERGpGCVY9cLCklGd/WsmFr85iX2EJH9/Yj/8b0Rl/Xzd8e9fPgE9GQ1R7uOJT8A+qUTXbCrbxj9n/oHtUdy3LLi4zJH4IozqM4r2l75G2I61mlRgD570Anc6ByX+Ghe86NcaKb2kY3bcV3949mLiIYG7+YCH3T0hjd4Hr5oKJiIhIzSjBquMWb9zNeS/N5JXpaxiZ3Jyf7juFge3dMCQQIGsWfHIZNGkN137jWAigBkrLSnloxkOUlpXy9ClP4+/j7+RARf7w55Q/0zy0OX/+7c/kFubWrBJff7h0HHQ4y7EJcer7To2xMu2bhvHVnQO55/QOfJu+hTNe+I3JmVvdcm8RERGpGiVYddTugiIe+TqTi1+fTcHBEt67vg/PX5bs2iXYj7RiMnw0Chq1gGsnQVjN96p6PvV5Uren8nD/h2nVqJUTgxQ5XnhAOM+f9jy7C3fz0O+OxL5G/ALhsg+g/XD49h6Y9T+XL3wBEOjnywNndGTSXY7erDs+XsSN4xaQtbPA5fcWERGRk1OCVceUlJbx/uwsTnv2Vz6dv4lrByTw0/2nMLRTU/cFkToOJlwFTbvC9T9AeGyNq/p6zdd8sOwDruh8hVYNFLfpEtWFv/X7G3O2zuG51OdqXpF/EIz+BLqNgl8ehZ/+BmVlzgv0BLo2b8RXdwzk4XO6MG99Lme+8DtP/bCCfQdL3HJ/ERERqZifpwOQqrHW8vOy7Tz380pWbd/HoPZR/OP8bnSMDXdfEKUlMPUxmP0ytD/DMUQqMKzG1c3dOpcn5jxBv7h+/F+f/3NamCJVMarDKFbnrebDZR8SFxrHNV2vqVlFfoFw8TsQFgtzX4PdG+Ci1yEowrkBV3RrXx9uPqUtF/Rszn9/XMkbv63ly0XZ3H16By5PaUmAn95DExERcTclWF7OWsvvq3fy3M8rycjeQ9voUN64uhdndWvm3mXMC3Y6NljNmgF9boYR/3HMQ6mhtB1p3DPtHlo3as1zpz6Hn49+FMW9jDH8JeUvbC/YzjMLnqFxYGPOb3d+zSrz8XH8TjRJcGxXMHYYXP4xNO3s1Jgr0zQ8iGcvTeKqfq349+Tl/P3rJbz521ruG96RC5Ob4+eOBW9EREQE0BBBr1VaZvlxyVZGvT6bMe/OZ9e+Iv57cSI/338KI7rHuTe5WjMF3hgM2Qvgwjfg3GdrnVzdMeUOmoY0ZeyZY4kIdP07/SIV8fXx5T9D/kPfZn15eObDfL3m65pXZgz0vw3GfAuFe2HsUFjwjlvmZR3Ss1UTPrt1AOOu70OTkAD+/Hk6w5//jY/mbqCwuIZzzURERKRa1G3gZQoOlvDV4s28M3M963cW0CoyhCcv6MZlfVoS6Ofr3mAO5jvmlSx8F2I6w5WfQVxirar8Pft3/vTrn4gNjWXsGWOJDnbTiocilQjyC+Ll01/mvun38fdZf2fPwT1c2/Xamr+J0Xog3Po7fH07fP8ArPgeRr4MES2cG3gljDGc1qkpp3aM4ael23n91zU88vUSXvhlFdcOSODKfq2ICQ90SywiIiINkRIsL7F0yx4+mbeRb9K2sO9gCUnxEbx6ZS9GdG+Gr48be6vA8Y575kT45e+Qvw0G3g1DH6nxHleOKi0fLPuAF1JfoHNkZ14b/hqRQTVb1l3E2YL9gnlp2Ev8dcZfeXbhs6zfs56H+z2Mf017ahvFwTVfwYK34ee/wyt94NS/QP87wc89K30aYxjRvRlndYtl3vpc3vp9HS9MWcXL01ZzVrdmXNmvFQPaRuHj7v9fRERE6jklWB60dc8BvkvfyqT0LWRu3kOgnw/nJsZxVb9W9GrVxL3DAA/ZMBumPgEb50BcMlz2IbTsU6sq9xzcw+NzHueXDb8wvNVw/jn4n4T6hzonXhEnCfQN5NlTn+WVxa8wNnMsy3OX8/SQp0mISKhZhcZA35sdy7j/9DeY8hgs/giGPgxdL3TM23IDYwz920bRv20Ua3bsY/z8jUxclM33mVtpFRnCBcnNGZnUnA7uXDBHRESkHjPWjfMDnCElJcUuXLjQ02HU2Kbc/UxZvp0fl2xjflYu1kJifAQX9WzBqJ7xRIR4YJNda2HDLPj9GVj3q2M1tNP+Cr2uBZ/aDUucunEq/5z7T/IK87i3172M6TbGM4mjSDVM3TCVf8z5B0WlRdzT8x5Gdx5d+4VYVv8CPz0MO1dC026OHq3O54Ov+9/nKiwu5ccl2/hiUTaz1uykzELnZuGc0yOO4V1i6RIXXqd/T40xqdbalNrWU9fbm/oi4aHvPR2CV8gKutLTIXhcjzbaKxMgc0ymp0OQcpW1N0qwXKzgYAmpG3YzZ90upq/YwYpt+QC0bxrGeYlxjExqTtuYmi91XisH82HZNzD3DdieCSHRMPg+SLkRAkJqVfXq3at5buFzzNoyi05NOvHPwf+kc6R7VlQTcYZtBdt4bPZjzNoyi86RnXmg9wP0j+tfu8SjrBSWfAm/PQW71kBES+hzEyRfCWFu3MvuCDvyC5mcsZVv0reweGMeAC0aBzOsc1MGtY+ib5soIt21gbmTKMGqX5RgOSjBUoJ1iBIs76EEy0327C8mLTuPeet2MXfdLjKy91BSZvHzMaQkNGF4l1hO7xJLm2gPDZErKXKsCpj5Oaz8AUoOQEwXx+pnPS6rVWJlrWXxjsW8v/R9pm+aTlhAGLcm3sqVXa7E38cDPXMitWSt5ZcNv/DMwmfYVrCN3rG9ua7bdQxpMQTf2vTulpU6fv/mveHY+sD4QNvToMel0Pk8CGrktGeojh35hUxfsYMpy3cwc/VODpSvPNi5WTj920bRr00kvVo3oWl4oFf3cCnBql+UYDkowVKCdYgSLO+hBMvJrLXsyD/I8q17WbplL0s272HJlj1syj0AgJ+PITE+4vDch96tmxAa6KEpb7nrYO10WDsN1s+Ag3sgOBK6XeT4g65Vf8d8kRraeWAnP2X9xHdrv2PJriVEBEZwWcfLuLbrtTQOauy85xDxkKLSIiaumsg7S95hx/4dxIXGcUnHSzg74WxaNmpZu8p3rIDMzxxveuRtBN9AaD0A2g2DtkMhtrvb5msdqaikjMzNecxdl8vcdbtYmLX7cMIVHRZI9xaN6N48gu4tIuga14gWTYLdvyBPJZRg1S9KsByUYCnBOkQJlvfwSIJljBkB/A/wBd621j51zPlA4AOgN7ALuNxam3WiOt3Z4JWWWXbkF7Il7wCb8wpZn1PAup37WJdTwPqdBew7WHK4bOuokMN/bPRoEUHPVo09k1Dtz4VtmbBlEWxeBFsWw55NjnMRLR3vknc53/HHWw1XSCsuK2bpzqXM3zafOVvmkLo9FYulfeP2XN7pcka2G0mIf+2GGIp4o+KyYn7b9BsTVk5g7ta5ALRv3J6hLYfSP64/PWJ6EOwXXLPKrXXsNbf0a8ebITnLHcdDoqB5L2jRy/FvXCKEx9XqTZGaOJRwZWTvYcnmvSzdsofVO/ZRWuZoQwL8fEiICqFtdBhtY0JpGxNGfJNgmkcE0ywiiAA/9yWJSrDqFyVYDkqwlGAdogTLe1TW3rgsAzDG+AKvAmcA2cACY8wka+2yI4rdCOy21rY3xowGngYud1VMh+zad5CcfQfJ3VfEroIicguK2LXv4OHPc/IPsiXvANvzDx7+48HxTNA8Ipi2MaFc0jueNtGhdIgNo1vzCCKCPTQEbtkkWP2zYz7HzlWwf9cf55okQHyKY5n1dsMgqn2t/yhbmbuSa364hgMljp66Dk06cGvSrYxIGEG7xu1qVbeIt/P38Wd46+EMbz2c7Pxspm+azvRN03l3ybuMzRyLn48f/xz0T85te271KzcGWvZ1fADs3eJYdCZrpuONkrVTwZY5zgWEQ3R7iOrg+B3vd6vTnrEyAX4+9G4dSe/Wf2yvUFhcyvKte1m5LZ91OwtYl7OPVTvymbJ8OyVlR795FxMeSPOIIJo2CiIqNIDI8o/osMDDn0eFBdCsUZBXDz8UERE5GVd2sfQF1lhr1wEYY8YDFwBHJlgXAI+Vfz4ReMUYY6yLxy3e+P5C0jblHXXMGGgc7H+4we/fNormjYOJaxxE88bBtGgcTKvIEIL83bzZ78lsnAOrfoTojo65G9EdoWlnxzvdIc7fZ6p1o9Zc0O4C+jTrQ0qzFO1lJQ1WfHg813S9hmu6XkN+UT5pO9JI3Z7qvMVcGjV3LH6RXP6u9cF9jt7p7Utg52rHGyob58C+bW5JsCoS5O9Lz1ZN6NmqyVHHi0vLyN59oLz3/wBb8xwjAbbsOcDGXftZvDGP3fuLjnoDCxxJ3MonR7jzEURERJzOlQlWC2DTEa+zgX6VlbHWlhhj9gBRwE4XxsU9p7dnf1HpUe+eNg72x8/X/fMcau3Mf8KI/7jtdkF+QTzc/2G33U+kLggPCGdI/BCGxA9x3U0Cwxxzs1oPOPp4Wanr7llD/r4+tIkOPeFiPmVllr2FxUeNIthfVKreKxERqfPqxEbDxphbgFvKX+4zxqysoFg0Lk7MvFxDfv6G/Oyg52/Iz9+Qnx0qf/7WNa2wiu2NiNt5yVsPHv4/Z4nnbu1FzHVe8tMgUEl748oEazNw5PJa8eXHKiqTbYzxAyJwLHZxFGvtW8BbJ7qZMWahMyY111UN+fkb8rODnr8hP39DfnZwzfNXpb0Raaga+v85IlXlyjFxC4AOxpg2xpgAYDQw6Zgyk4Ax5Z9fAkxz9fwrERERERERV3FZD1b5nKq7gJ9wLNP+rrV2qTHmCWChtXYS8A7woTFmDZCLIwkTERERERGpk1w6B8taOxmYfMyxR4/4vBC41Em3a+hDOhry8zfkZwc9f0N+/ob87KDnF3E3/c6JVIFLNxoWERERERFpSOrguuQiIiIiIiLeqc4mWMaYS40xS40xZcaYSle0McaMMMasNMasMcY85M4YXckYE2mM+cUYs7r83yaVlCs1xqSVfxy7yEidcrLvpTEm0Bgzofz8PGNMggfCdJkqPP91xpicI77fN3kiTlcwxrxrjNlhjKlwjV7j8FL51ybDGNPL3TG6ShWe/TRjzJ4jvu+PVlSurjLGtDTGTDfGLCv/P//eCsrU2++/iIjUPXU2wcKxGcIo4PfKChhjfIFXgbOBrsAVxpiu7gnP5R4CplprOwBTy19X5IC1Nrn8Y6T7wnOuKn4vbwR2W2vbAy8AT7s3Stepxs/yhCO+32+7NUjXGgeMOMH5s4EO5R+3AK+7ISZ3GceJnx1gxhHf9yfcEJM7lQB/stZ2BfoDd1bws1+fv/8iIlLH1NkEy1q73Fp7sg0g+wJrrLXrrLVFwHjgAtdH5xYXAO+Xf/4+cKHnQnGLqnwvj/yaTARON8bUl9346vPP8klZa3/HsdJoZS4APrAOc4HGxpg490TnWlV49nrNWrvVWruo/PN8YDnQ4phi9fb7LyIidU+dTbCqqAWw6YjX2RzfMNdVsdbareWfbwNiKykXZIxZaIyZa4y50D2huURVvpeHy1hrS4A9QJRbonO9qv4sX1w+RGqiMaZlBefrq/r8u14VA4wx6caYH4wx3TwdjKuUD/vtCcw75lRD//6LuIQxZpAxJrT886uNMc8bY1p7Oi4Rb+fSZdpryxgzBWhWwamHrbXfuDsedzvR8x/5wlprjTGVLQfZ2lq72RjTFphmjMm01q51dqziFb4FPrXWHjTG3IqjN2+Yh2MS11uE4/d8nzHmHOBrHEPl6hVjTBjwBXCftXavp+MRaSBeB5KMMUnAn4C3gQ+AUz0alYiX8+oEy1o7vJZVbAaOfBc/vvxYnXCi5zfGbDfGxFlrt5YPhdlRSR2by/9dZ4z5Fce7v3UxwarK9/JQmWxjjB8QAexyT3gud9Lnt9Ye+axvA/91Q1zeok7/rtfGkcmGtXayMeY1Y0y0tXanJ+NyJmOMP47k6mNr7ZcVFGmw338RFyspfxP3AuAVa+07xpgbPR2UiLer70MEFwAdjDFtjDEBwGigTq+kd4RJwJjyz8cAx/XoGWOaGGMCyz+PBgYBy9wWoXNV5Xt55NfkEmCarT8bvZ30+Y+ZczISx1yVhmIScG35anL9gT1HDKGt14wxzQ7NNTTG9MXx/3p9eWOB8md7B1hurX2+kmIN9vsv4mL5xpi/AlcD3xtjfAB/D8ck4vW8ugfrRIwxFwEvAzE4funTrLVnGWOaA29ba8+x1pYYY+4CfgJ8gXettUs9GLYzPQV8Vv5O0gbgMgDjWLL+NmvtTUAX4E1jTBmOP7qestbWyQSrsu+lMeYJYKG1dhKOP8I+NMaswbEowGjPRexcVXz+e4wxI3GsupYLXOexgJ3MGPMpcBoQbYzJBv5BeSNvrX0DmAycA6wB9gPXeyZS56vCs18C3G6MKQEOAKPr0RsL4Hhj6Bog0xiTVn7sb0ArqP/ffxEPuxy4ErjRWrvNGNMKeMbDMYl4PVO/2mERERERcQZjzNPW2gdPdkxEjlbfhwiKiIiISM2cUcGxs90ehUgdU2eHCIqIiIiI8xljbgfuANoaYzKOOBUOzPZMVCJ1h4YIioiIiMhhxpgIoAnwH+ChI07lW2sb7MbnIlWlBEtEREREKmSM8QViOWLUk7V2o+ciEvF+GiIoIiIiIscpX732MWA7UFZ+2AKJnopJpC5QD5aIiIiIHKd825N+x2xkLyInoVUERURERKQim4A9ng5CpK5RD5aIiIiIHGaMeaD8025AJ+B74OCh89ba5z0Rl0hdoTlYIiIiInKk8PJ/N5Z/BJR/iEgVqAdLRERERETESdSDJSIiIiLHMcZ8i2PVwCPtARYCb1prC90flYj30yIXIiIiIlKRdcA+YGz5x14gH+hY/lpEKqAhgiIiIiJyHGPMAmttn4qOGWOWWmu7eSo2EW+mHiwRERERqUiYMabVoRfln4eVvyzyTEgi3k9zsERERESkIn8CZhpj1gIGaAPcYYwJBd73aGQiXkxDBEVERESkQsaYQKBz+cuVWthC5OSUYImIiIjIYcaYYdbaacaYURWdt9Z+6e6YROoSDREUERERkSOdCkwDzq/gnAWUYImcgHqwREREREREnESrCIqIiIjIcYwxscaYd4wxP5S/7mqMudHTcYl4OyVYIiIiIlKRccBPQPPy16uA+zwVjEhdoQRLRERERCoSba39DCgDsNaWAKWeDUnE+ynBEhEREZGKFBhjonAsbIExpj+wx7MhiXg/LXIhIiIiIocZY+4DZpe/fB7oDiwFYoBLrbXpHgpNpE5QgiUiIiIihxljngUG4thgeAWwGfgd+NRau9OTsYnUBUqwREREROQ4xpgAIAVHsjWg/CPPWtvVo4GJeDltNCwiIiIiFQkGGgER5R9bgEyPRiRSB6gHS0REREQOM8a8BXQD8oF5wFxgrrV2t0cDE6kjtIqgiIiIiBypFRAIbMMx/yobyPNkQCJ1iXqwREREROQoxhiDoxdrYPlHdyAXmGOt/YcnYxPxdkqwRERERKRCxph4YBCOJOs8IMpa29ijQYl4OSVYIiIiInKYMeYe/ui5KsaxJ9ahj0xrbZkHwxPxelpFUERERESOlAB8Dtxvrd3q4VhE6hz1YImIiIiIiDiJVhEUERERERFxEiVYIiIiIiIiTqIES0RERERExEmUYImIiIiIiDjJ/wMAcp1VYcFOwAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
@@ -1097,19 +1097,19 @@
"
\n",
"\n",
- "
\n",
+ "
\n",
" \n",
"
\n",
"
\n",
- "
VW
\n",
- "
Ford
\n",
+ "
VW
\n",
+ "
Ford
\n",
"
\n",
" \n",
" \n",
"
\n",
- "
Rank
\n",
- "
2
\n",
- "
1
\n",
+ "
Rank
\n",
+ "
2
\n",
+ "
1
\n",
"
\n",
" \n",
"
\n",
@@ -1272,7 +1272,15 @@
"pipelines combine one or several transformers and one decision-maker the\n",
"facilitate the execution of the experiments.\n",
"\n",
- "So, let's import the necessary modules for *TOPSIS* and the *pipelines*:"
+ "So, let's import the necessary modules for *TOPSIS* and the *pipelines*:\n",
+ "\n",
+ "
\n",
+ "Distances and InvertMinimize\n",
+ "\n",
+ "Since `TOPSIS` uses distances as a comparison metric, it is not recommended to \n",
+ "use the `InvertMinimize` transformer. Instead we use `NegateMinimize`.\n",
+ "\n",
+ "