forked from linkedin/Liger-Kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_swiglu.py
161 lines (127 loc) · 4.49 KB
/
benchmark_swiglu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from typing import List
import torch
import triton
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaMLP
from utils import (
_print_memory_banner,
_print_speed_banner,
_test_memory,
get_current_file_directory,
)
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
LLAMA_CONFIG = LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
hidden_act="silu",
)
SLEEP_SECONDS = 0.1
def _get_perf_configs(target: str, ylabel: str, modes: List[str] = ["full"]):
perf_configs = []
for mode in modes:
perf_configs.append(
triton.testing.Benchmark(
x_names=["N"],
x_vals=[2**i for i in range(10, 14)],
xlabel="Seq Length",
line_arg="provider",
line_vals=["liger", "huggingface"],
line_names=["Liger", "Hugging Face"],
styles=[("blue", "solid"), ("orange", "solid")],
ylabel=ylabel,
plot_name=f"swiglu-{mode}-{target}-benchmark",
args={"dtype": torch.bfloat16, "mode": mode},
)
)
return perf_configs
@triton.testing.perf_report(
_get_perf_configs(
target="speed", ylabel="time (ms)", modes=["forward", "backward", "full"]
)
)
def bench_speed_swiglu(N, dtype, provider, mode="forward", device="cuda"):
# llama 7b: (4096, 11008)
bsz, seq_len, hidden_size = 4, N, 4096
x_shape = (bsz, seq_len, hidden_size)
# initialize input
x = torch.randn(*x_shape, device=device, dtype=dtype, requires_grad=True)
quantiles = [0.5, 0.2, 0.8]
if provider == "liger":
layer = LigerSwiGLUMLP(config=LLAMA_CONFIG).to(device).to(dtype)
elif provider == "huggingface":
layer = LlamaMLP(config=LLAMA_CONFIG).to(device).to(dtype)
else:
raise ValueError(f"Invalid provider: {provider} for SwiGLU")
def fwd():
return layer(x)
if mode == "forward":
ms, min_ms, max_ms = triton.testing.do_bench(
fwd, quantiles=quantiles, grad_to_none=[x], rep=10
)
elif mode == "backward":
do = torch.randn_like(x)
y = fwd()
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: y.backward(do, retain_graph=True),
quantiles=quantiles,
grad_to_none=[x],
rep=10,
)
else:
def full():
y = fwd()
y.backward(torch.randn_like(y), retain_graph=True)
ms, min_ms, max_ms = triton.testing.do_bench(
full, quantiles=quantiles, grad_to_none=[x], rep=10
)
return ms, max_ms, min_ms
def benchmark_speed_swiglu_wrapper():
_print_speed_banner()
curr_dir = get_current_file_directory()
dir_name = "swiglu_speed"
output_dir = os.path.join(curr_dir, dir_name)
os.makedirs(output_dir, exist_ok=True)
bench_speed_swiglu.run(save_path=output_dir, print_data=True)
@triton.testing.perf_report(
benchmarks=_get_perf_configs(
target="memory",
ylabel="GPU memory usage (MB)",
modes=["forward", "backward", "full"],
)
)
def bench_memory_swiglu(N, dtype, provider, mode="forward", device="cuda"):
# llama 7b: (4096, 11008)
bsz, seq_len, hidden_size = 4, N, 4096
x_shape = (bsz, seq_len, hidden_size)
# initialize input
x = torch.randn(*x_shape, device=device, dtype=dtype, requires_grad=True)
if provider == "liger":
layer = LigerSwiGLUMLP(config=LLAMA_CONFIG).to(device).to(dtype)
elif provider == "huggingface":
layer = LlamaMLP(config=LLAMA_CONFIG).to(device).to(dtype)
else:
raise ValueError(f"Invalid provider: {provider} for SwiGLU")
def fwd():
return layer(x)
def full():
y = fwd()
y.backward(torch.randn_like(y), retain_graph=True)
if mode == "forward":
mem = _test_memory(fwd)
elif mode == "backward":
do = torch.randn_like(x)
y = fwd()
mem = _test_memory(lambda: y.backward(do, retain_graph=True))
else:
mem = _test_memory(full)
return mem / 2**20
def benchmark_memory_swiglu_wrapper():
_print_memory_banner()
curr_dir = get_current_file_directory()
output_dir = os.path.join(curr_dir, "swiglu_memory")
os.makedirs(output_dir, exist_ok=True)
bench_memory_swiglu.run(save_path=output_dir, print_data=True)
if __name__ == "__main__":
benchmark_speed_swiglu_wrapper()
benchmark_memory_swiglu_wrapper()