-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclusteranalysis.py
221 lines (180 loc) · 6.93 KB
/
clusteranalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
@author: Rafael Almada
"""
import numpy as np
def cluster_bev(embedding, blobs):
resolution = blobs.shape[0]
n_grid = resolution*1j
q1,q2 = np.mgrid[embedding[:,0].min():embedding[:,0].max():n_grid,
embedding[:,1].min():embedding[:,1].max():n_grid]
thr1 = (embedding[:,0].max()-embedding[:,0].min())/resolution
thr2 = (embedding[:,1].max()-embedding[:,1].min())/resolution
thr = [thr1,thr2]
#ones_im = np.where(bin_im!1)
b1,b2 = get_clusters_labels(blobs)
res = cluster_time_labels(thr,b1,b2,q1[:,0],q2[0],embedding)
return b1,b2,res,thr
def get_clusters_labels(blobs):
b1 = []
b2 = []
for i in range(1,np.max(blobs)+1):
b1.append(np.where(blobs==i)[1])
b2.append(np.where(blobs==i)[0])
return b1, b2
def cluster_time_labels(thr,b1,b2,q1,q2,embedding):
res = []
len_b = len(b1)
for i in range(len_b):
r = []
for j in range(len(b1[i])):
a = (embedding[:,0]<=(q1[b2[i][j]]+thr[0])) & (embedding[:,0]>=(q1[b2[i][j]]))
b = (embedding[:,1]<=(q2[b1[i][j]]+thr[1])) & (embedding[:,1]>=(q2[b1[i][j]]))
r.append(np.array(np.where(a*b==True))[0].flatten())
res.append(np.concatenate(r,axis=0))
return res
def cluster_bev_avg(Dataset,Bevmat):
len_var = Dataset.shape[0]
len_cl = Bevmat.shape[1]
avg_var = np.zeros((len_var,len_cl))
for i in range(len_var):
for j in range(len_cl):
if (i == 1) or (i == 2):
if i == 1:
X_i = np.mean(np.abs(np.cos(np.pi*X[i,np.where(bevmat_conv[:,j]==1)[0]])))
if i == 2:
X_i = np.median(np.cos(np.pi*X[i,np.where(bevmat_conv[:,j]==1)[0]]))
else:
X_i = np.mean(X[i,np.where(bevmat_conv[:,j]==1)[0]])
avg_var[i,j] = X_i
return avg_var
def not_in_array(len_d,array):
loc_list = []
for i in range(len_d):
if i not in array:
loc_list.append(i)
return np.array(loc_list)
def cluster_label_behaviors(Dataset, Bevmat):
avg_var = cluster_bev_avg(Dataset, Bevmat)
# Distinguish fight from not fight
fight_loc1 = np.where(avg_var[4]>np.median(avg_var[4]))[0]
fight_loc2 = np.where(avg_var[0]<np.median(avg_var[0]))[0]
fight = np.array(list(set(fight_loc1).intersection(fight_loc2)))
# Distinguish symmetric from assymetric fight
sym_fight = fight[np.where(avg_var[5][fight]<np.median(avg_var[1][fight]))[0]]
asym_fight = fight[np.where(avg_var[5][fight]>=np.median(avg_var[1][fight]))[0]]
not_fight = not_in_array(N,fight)
# Distinguish freeze from not freeze
freeze = not_fight[np.where(avg_var[4][not_fight]<0.6*np.mean(avg_var[4]))[0]]
n_freeze = not_fight[np.where(avg_var[4][not_fight]>=0.6*np.mean(avg_var[4][not_fight]))[0]]
# Distinguish displays from not displays
n_display = n_freeze[np.where(avg_var[1][n_freeze]<0.3)[0]]
display = n_freeze[np.where(avg_var[1][n_freeze]>=0.3)[0]]
#Distinguish between passive and active displays
act_d = display[np.where(avg_var[4][display]>np.mean(avg_var[4][display]))]
p_disp = display[np.where(avg_var[4][display]<=np.mean(avg_var[4][display]))]
return [p_disp, act_d, asym_fight, sym_fight, freeze, n_display]
def reorder_label_bevmat(behav_label, Bevmat):
bevmat2 = np.zeros(Bevmat.shape)
pas_disp = behav_label[0]
act_disp = behav_label[1]
sym_fight = behav_label[3]
asym_fight = behav_label[2]
freeze = behav_label[4]
other = behav_label[5]
ld1 = len(pas_disp)
ld2 = len(pas_disp)+len(act_disp)
la2 = ld2 + len(asym_fight)
la1 = la2 + len(sym_fight)
lfr = la1 + len(freeze)
lres = lfr+len(other)
bevmat2[:,:ld1] = np.array(Bevmat[:,pas_disp])
bevmat2[:,ld1:ld2] = np.array(Bevmat[:,act_disp])
bevmat2[:,ld2:la2] = np.array(Bevmat[:,asym_fight])
bevmat2[:,la2:la1] = np.array(Bevmat[:,sym_fight])
bevmat2[:,la1:lfr] = np.array(Bevmat[:,freeze])
bevmat2[:,lfr:lres] = np.array(Bevmat[:,other])
return bevmat2
def symbol_seq(bevmat):
bevmat1 = np.zeros(bevmat.shape)
for i in range(bevmat.shape[1]):
bevmat1[:,i] = bevmat[:,i]*(i+1)
symbseq = np.sum(bevmat1,axis=1)%(bevmat.shape[1]+1)
return symbseq
def compress_seq(symbseq):
symb_loc = []
t_dwell = []
s = 0
for i in range(len(symbseq)-2):
s += 1
if symbseq[i+1] != symbseq[i]:
symb_loc.append(i)
t_dwell.append([symbseq[i],s])
s = 0
t_dwell_arr = np.array(t_dwell)
comp_seq = symbseq[symb_loc]
return comp_seq, t_dwell_arr
def t_dwell_dist(t_dwell_arr,len_bevmat,dt):
avg_td = np.zeros(len_bevmat)
std_td = np.zeros(len_bevmat)
for i in range(len_bevmat):
avg_td[i] = np.mean(t_dwell_arr[np.where(t_dwell_arr[:,0]==i+1)][:,1])*dt
std_td[i] = np.std(t_dwell_arr[np.where(t_dwell_arr[:,0]==i+1)][:,1])*dt
return avg_td, std_td
def transition_matrix(seq):
## Credits in https://stackoverflow.com/questions/46657221
## to users/4996248/john-coleman
n = int(1+np.max(seq))
M = [[0]*n for _ in range(n)]
for (i,j) in zip(seq,seq[1:]):
M[int(i)][int(j)] += 1
M1 = np.array(M)
for row in M:
s = sum(row)
if s > 0:
row[:] = [f/s for f in row]
return M,M1
def transition_matrix_tau(seq,tau):
## Credits in https://stackoverflow.com/questions/46657221
## to users/4996248/john-coleman
n = int(1+np.max(seq))
M = [[0]*n for _ in range(n)]
for (i,j) in zip(seq,seq[tau:]):
M[int(i)][int(j)] += 1
for row in M:
s = sum(row)
if s > 0:
row[:] = [f/s for f in row]
return M
def prop_trans_mat(M):
n_elem = np.array(M).shape[0]-1
M1 = np.abs(np.array(M)[1:,1:]-0*np.array(M)[1:,1:]*np.identity(n_elem))
M00 = (np.sum(M1, axis=1))
m1_2 = np.zeros(M1.shape)
for i in range(len(M00)):
m1_2[i] = M1[i]/M00[i]
return m1_2
def entropy_rate(m1_2,comp_seq,len_bevmat):
hist_seq, seq_n = np.histogram(comp_seq,bins=len_bevmat,density=True)
ent_1 = []
for i in range(len_bevmat):
ent_1.append(np.nansum(hist_seq[i]*m1_2[i]*np.log(m1_2[i]+0.01)))
ent2 = np.sum(np.array(ent_1))
return ent2
def graph_entropy(m1_2):
k = np.sum(m1_2>0,axis=1)
E = np.sum(np.triu(m1_2>0))
Hent = np.sum(k*np.log2(k))/(2*E)
return Hent
def process_analysis(comp_seq, len_bevmat):
N1 = len_bevmat
N = int(len(comp_seq)/2)-2
eig_vec = np.zeros((N,N1))
Hent_vec = np.zeros((N,))
ent2_vec = np.zeros((N,))
for i in range(1,N+1):
M1 = transition_matrix_tau(comp_seq,i)
m1 = prop_trans_mat(M1)
Hent_vec[i-1] = graph_entropy(m1)
eig_vec[i-1] = np.sort(np.abs(np.linalg.eig(np.nan_to_num(m1))[0]))
ent2_vec[i-1] = entropy_rate(m1,comp_seq,len_bevmat)
return eig_vec, ent2_vec,Hent_vec