-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
462 lines (391 loc) · 23.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
import warnings
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
#from datasets import build_dataset
from engine import train_one_epoch, evaluate
import models
import my_models
import torch.nn as nn
import utils
from video_dataset import VideoDataSet
from video_dataset_aug import get_augmentor, build_dataflow
from video_dataset_config import get_dataset_config, DATASET_CONFIG
warnings.filterwarnings("ignore", category=UserWarning)
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--model_name',default="TALL_SWIN")
parser.add_argument('--batch-size', default=2, type=int)
parser.add_argument('--epochs', default=30, type=int)
# Dataset parameters
parser.add_argument('--data_txt_dir', type=str,default='##path_for_dataset_txt##', help='path to text of dataset')
parser.add_argument('--data_dir', type=str,default="##path_for_dataset##", help='path to dataset')
parser.add_argument('--dataset', default='ffpp_train',
choices=list(DATASET_CONFIG.keys()), help='path to dataset file list')
parser.add_argument('--duration', default=8, type=int, help='number of frames')
parser.add_argument('--frames_per_group', default=1, type=int,
help='[uniform sampling] number of frames per group; '
'[dense sampling]: sampling frequency')
parser.add_argument('--threed_data', default=False, help='load data in the layout for 3D conv')
parser.add_argument('--input_size', default=224, type=int, metavar='N', help='input image size')
parser.add_argument('--disable_scaleup', action='store_true',
help='do not scale up and then crop a small region, directly crop the input_size')
parser.add_argument('--random_sampling', action='store_true',
help='perform determinstic sampling for data loader')
parser.add_argument('--dense_sampling', default=True,
help='perform dense sampling for data loader')
parser.add_argument('--augmentor_ver', default='v1', type=str, choices=['v1', 'v2'],
help='[v1] TSN data argmentation, [v2] resize the shorter side to `scale_range`')
parser.add_argument('--scale_range', default=[256, 320], type=int, nargs="+",
metavar='scale_range', help='scale range for augmentor v2')
parser.add_argument('--modality', default='rgb', type=str, help='rgb or flow')
parser.add_argument('--use_lmdb', default=False, help='use lmdb instead of jpeg.')
parser.add_argument('--use_pyav', default=False, help='use video directly.')
# temporal module
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--temporal_module_name', default=None, type=str, metavar='TEM', choices=['ResNet3d', 'TAM', 'TTAM', 'TSM', 'TTSM', 'MSA'],
help='temporal module applied. [TAM]')
parser.add_argument('--temporal_attention_only', action='store_true', default=False,
help='use attention only in temporal module]')
parser.add_argument('--no_token_mask', action='store_true', default=False, help='do not apply token mask')
parser.add_argument('--temporal_heads_scale', default=1.0, type=float, help='scale of the number of spatial heads')
parser.add_argument('--temporal_mlp_scale', default=1.0, type=float, help='scale of spatial mlp')
parser.add_argument('--rel_pos', action='store_true', default=False,
help='use relative positioning in temporal module]')
parser.add_argument('--temporal_pooling', type=str, default=None, choices=['avg', 'max', 'conv', 'depthconv'],
help='perform temporal pooling]')
parser.add_argument('--bottleneck', default=None, choices=['regular', 'dw'],
help='use depth-wise bottleneck in temporal attention')
parser.add_argument('--window_size', default=14, type=int, help='number of frames')
parser.add_argument('--thumbnail_rows', default=4, type=int, help='number of frames per row')
parser.add_argument('--hpe_to_token', default=False, action='store_true',
help='add hub position embedding to image tokens')
# Model parameters
parser.add_argument('--model', default='TALL_SWIN', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=1e-5,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-8, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-7, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=10, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=False)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.0, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--cutout',default=True)
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Dataset parameters
parser.add_argument('--output_dir', default="",
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default="", help='resume from checkpoint')
parser.add_argument('--no-resume-loss-scaler', action='store_false', dest='resume_loss_scaler')
parser.add_argument('--no-amp', action='store_false', dest='amp', help='disable amp')
parser.add_argument('--use_checkpoint', default=False, help='use checkpoint to save memory')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# for testing and validation
parser.add_argument('--num_crops', default=1, type=int, choices=[1, 3, 5, 10])
parser.add_argument('--num_clips', default=1, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--auto-resume', default=True, help='auto resume')
# exp
# parser.add_argument('--simclr_w', type=float, default=0., help='weights for simclr loss')
parser.add_argument('--contrastive_nomixup', action='store_true', help='do not involve mixup in contrastive learning')
parser.add_argument('--finetune', default=False, help='finetune model')
parser.add_argument('--initial_checkpoint', type=str, default='', help='path to the pretrained model')
parser.add_argument('--hard_contrastive', action='store_true', help='use HEXA')
# parser.add_argument('--selfdis_w', type=float, default=0., help='enable self distillation')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
# Patch
if not hasattr(args, 'hard_contrastive'):
args.hard_contrastive = False
if not hasattr(args, 'selfdis_w'):
args.selfdis_w = 0.0
#is_imnet21k = args.data_set == 'IMNET21K'
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
num_classes, train_list_name, val_list_name, test_list_name, filename_seperator, image_tmpl, filter_video, label_file = get_dataset_config(
args.dataset, args.use_lmdb)
args.num_classes = num_classes
if args.modality == 'rgb':
args.input_channels = 3
elif args.modality == 'flow':
args.input_channels = 2 * 5
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.num_classes)
print(f"Creating model: {args.model}")
model =create_model(
args.model,
pretrained=args.pretrained,
duration=args.duration,
hpe_to_token = args.hpe_to_token,
rel_pos = args.rel_pos,
window_size=args.window_size,
thumbnail_rows = args.thumbnail_rows,
token_mask=not args.no_token_mask,
online_learning = False,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
use_checkpoint=args.use_checkpoint
)
# TODO: finetuning
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume=args.resume)
model_without_ddp = model
if args.distributed:
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
optimizer = create_optimizer(args, model)
loss_scaler = NativeScaler()
#print(f"Scaled learning rate (batch size: {args.batch_size * utils.get_world_size()}): {linear_scaled_lr}")
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
if args.distributed:
mean = (0.5, 0.5, 0.5) if 'mean' not in model.module.default_cfg else model.module.default_cfg['mean']
std = (0.5, 0.5, 0.5) if 'std' not in model.module.default_cfg else model.module.default_cfg['std']
else:
mean = (0.5, 0.5, 0.5) if 'mean' not in model.default_cfg else model.default_cfg['mean']
std = (0.5, 0.5, 0.5) if 'std' not in model.default_cfg else model.default_cfg['std']
# dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
# create data loaders w/ augmentation pipeiine
video_data_cls = VideoDataSet
train_list = os.path.join(args.data_txt_dir, train_list_name)
train_augmentor = get_augmentor(True, args.input_size, mean, std, threed_data=False,
version=args.augmentor_ver, scale_range=args.scale_range, cut_out = args.cutout,dataset=args.dataset)
dataset_train = video_data_cls(args.data_dir, train_list, args.duration, args.frames_per_group,
num_clips=args.num_clips,
modality=args.modality, image_tmpl=image_tmpl,
dense_sampling=args.dense_sampling,
transform=train_augmentor, is_train=True, test_mode=False,
seperator=filename_seperator, filter_video=filter_video)
num_tasks = utils.get_world_size()
data_loader_train = build_dataflow(dataset_train, is_train=True, batch_size=args.batch_size,
workers=args.num_workers, is_distributed=args.distributed)
val_list = os.path.join(args.data_txt_dir, val_list_name)
val_augmentor = get_augmentor(False, args.input_size, mean, std, args.disable_scaleup,
threed_data=args.threed_data, version=args.augmentor_ver,
scale_range=args.scale_range, num_clips=args.num_clips, num_crops=args.num_crops,cut_out = False, dataset=args.dataset)
dataset_val = video_data_cls(args.data_dir, val_list, args.duration, args.frames_per_group,
num_clips=args.num_clips,
modality=args.modality, image_tmpl=image_tmpl,
dense_sampling=args.dense_sampling,
transform=val_augmentor, is_train=False, test_mode=False,
seperator=filename_seperator, filter_video=filter_video)
data_loader_val = build_dataflow(dataset_val, is_train=False, batch_size=args.batch_size,
workers=args.num_workers, is_distributed=args.distributed)
max_accuracy = 0.0
output_dir = Path(args.output_dir)
if args.initial_checkpoint:
checkpoint = torch.load(args.initial_checkpoint, map_location='cpu')
utils.load_checkpoint(model, checkpoint['model'])
if args.auto_resume:
if args.resume == '':
args.resume = str(output_dir / "checkpoint.pth")
if not os.path.exists(args.resume):
args.resume = ''
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
utils.load_checkpoint(model, checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint and args.resume_loss_scaler:
print("Resume with previous loss scaler state")
loss_scaler.load_state_dict(checkpoint['scaler'])
if args.model_ema:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
max_accuracy = checkpoint['max_accuracy']
if args.eval:
test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, num_crops=args.num_crops, num_clips=args.num_clips)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
print(f"Start training, currnet max acc is {max_accuracy:.2f}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,args.num_clips,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn, num_tasks, True,
amp=args.amp,
contrastive_nomixup=args.contrastive_nomixup,
hard_contrastive=args.hard_contrastive,
finetune=args.finetune
)
lr_scheduler.step(epoch)
test_stats = evaluate(data_loader_val, model, device, num_tasks, distributed=args.distributed, amp=args.amp, num_crops=args.num_crops, num_clips=args.num_clips)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint{}.pth'.format(epoch)]
if test_stats["acc1"] == max_accuracy:
checkpoint_paths.append(output_dir / 'model_best.pth')
for checkpoint_path in checkpoint_paths:
state_dict = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'scaler': loss_scaler.state_dict(),
'max_accuracy': max_accuracy
}
if args.model_ema:
state_dict['model_ema'] = get_state_dict(model_ema)
utils.save_on_master(state_dict, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)