-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdarts_bohb.py
221 lines (173 loc) · 8.33 KB
/
darts_bohb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pickle
import datetime
import os
import logging
import time
import glob
import ConfigSpace as CS
import ConfigSpace.hyperparameters as CSH
from hpbandster.core.worker import Worker
import hpbandster.core.result as hpres
# import hpbandster.visualization as hpvis
import hpbandster.core.nameserver as hpns
from hpbandster.optimizers import BOHB
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
import sys
from settings import get
import utils
import genotypes
from model import NetworkKMNIST as Network
from train import train, infer
from datasets import K49, KMNIST
class TorchWorker(Worker):
def __init__(self, run_dir, init_channels=get('init_channels'), batch_size=get('batch_size'), split=0.8, dataset=KMNIST, **kwargs):
super().__init__(**kwargs)
self.init_channels = init_channels
self.run_dir = run_dir
data_augmentations = transforms.ToTensor()
self.train_dataset = dataset('./data', True, data_augmentations)
self.test_dataset = dataset('./data', False, data_augmentations)
self.n_classes = self.train_dataset.n_classes
self.split = split
self.batch_size = batch_size
if 'seed' in kwargs:
self.seed = kwargs['seed']
else:
self.seed = 0
def compute(self, config, budget, *args, **kwargs):
"""
Get model with hyperparameters from config generated by get_configspace()
"""
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
gpu = 'cuda:0'
np.random.seed(self.seed)
torch.cuda.set_device(gpu)
cudnn.benchmark = True
torch.manual_seed(self.seed)
cudnn.enabled=True
torch.cuda.manual_seed(self.seed)
logging.info('gpu device = %s' % gpu)
logging.info("config = %s", config)
genotype = eval("genotypes.%s" % 'PCDARTS')
model = Network(self.init_channels, self.n_classes, config['n_conv_layers'], genotype)
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
if config['optimizer'] == 'sgd':
optimizer = torch.optim.SGD(model.parameters(),
lr=config['initial_lr'],
momentum=config['sgd_momentum'],
weight_decay=config['weight_decay'],
nesterov=config['nesterov'])
else:
optimizer = get('opti_dict')[config['optimizer']](model.parameters(), lr=config['initial_lr'], weight_decay=config['weight_decay'])
if config['lr_scheduler'] == 'Cosine':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, int(budget))
elif config['lr_scheduler'] == 'Exponential':
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.1)
indices = list(range(int(self.split*len(self.train_dataset))))
valid_indices = list(range(int(self.split*len(self.train_dataset)), len(self.train_dataset)))
print("Training size=", len(indices))
training_sampler = SubsetRandomSampler(indices)
valid_sampler = SubsetRandomSampler(valid_indices)
train_queue = torch.utils.data.DataLoader(dataset=self.train_dataset,
batch_size=self.batch_size,
sampler=training_sampler)
valid_queue = torch.utils.data.DataLoader(dataset=self.train_dataset,
batch_size=self.batch_size,
sampler=valid_sampler)
for epoch in range(int(budget)):
lr_scheduler.step()
logging.info('epoch %d lr %e', epoch, lr_scheduler.get_lr()[0])
model.drop_path_prob = config['drop_path_prob'] * epoch / int(budget)
train_acc, train_obj = train(train_queue, model, criterion, optimizer, grad_clip=config['grad_clip_value'])
logging.info('train_acc %f', train_acc)
valid_acc, valid_obj = infer(valid_queue, model, criterion)
logging.info('valid_acc %f', valid_acc)
return({
'loss': valid_obj, # Hyperband always minimizes, so we want to minimise the error, error = 1-accuracy
'info': {} # mandatory- can be used in the future to give more information
})
@staticmethod
def get_configspace():
"""
Define all the hyperparameters that need to be optimised and store them in config
"""
cs = CS.ConfigurationSpace()
n_conv_layers = CSH.UniformIntegerHyperparameter('n_conv_layers', lower=3, upper=6)
initial_lr = CSH.UniformFloatHyperparameter('initial_lr', lower=1e-3, upper=1e-1, default_value='1e-2', log=True)
optimizer = CSH.CategoricalHyperparameter('optimizer', get('opti_dict').keys())
sgd_momentum = CSH.UniformFloatHyperparameter('sgd_momentum', lower=0.0, upper=0.99, default_value=0.9, log=False)
nesterov = CSH.CategoricalHyperparameter('nesterov', ['True', 'False'])
cs.add_hyperparameters([initial_lr, optimizer, sgd_momentum, nesterov, n_conv_layers])
lr_scheduler = CSH.CategoricalHyperparameter('lr_scheduler', ['Exponential', 'Cosine'])
weight_decay = CSH.UniformFloatHyperparameter('weight_decay', lower=1e-5, upper=1e-3, default_value=3e-4, log=True)
drop_path_prob = CSH.UniformFloatHyperparameter('drop_path_prob', lower=0, upper=0.4, default_value=0.3, log=False)
grad_clip_value = CSH.UniformIntegerHyperparameter('grad_clip_value', lower=4, upper=8, default_value=5)
cs.add_hyperparameters([lr_scheduler, drop_path_prob, weight_decay, grad_clip_value])
cond = CS.EqualsCondition(sgd_momentum, optimizer, 'sgd')
cs.add_condition(cond)
cond2 = CS.EqualsCondition(nesterov, optimizer, 'sgd')
cs.add_condition(cond2)
return cs
def run_bohb(exp_name, log_dir='EXP', iterations=20):
run_dir = 'bohb-{}-{}'.format(log_dir, exp_name)
if not os.path.exists(run_dir):
utils.create_exp_dir(run_dir, scripts_to_save=glob.glob('*.py'))
# log_format = '%(asctime)s %(message)s'
# logging.basicConfig(stream=sys.stdout, level=logging.INFO,
# format=log_format, datefmt='%m/%d %I:%M:%S %p')
# fh = logging.FileHandler(os.path.join(run_dir, 'log.txt'))
# fh.setFormatter(logging.Formatter(log_format))
# logging.getLogger().addHandler(fh)
result_logger = hpres.json_result_logger(directory=run_dir, overwrite=True)
# Start a nameserver
NS = hpns.NameServer(run_id=exp_name, host='127.0.0.1', port=0)
ns_host, ns_port = NS.start()
# Start a localserver
worker = TorchWorker(run_id=exp_name, host='127.0.0.1', nameserver=ns_host, nameserver_port=ns_port,
timeout=120, run_dir=run_dir)
worker.run(background=True)
# Initialise optimiser
bohb = BOHB(configspace=worker.get_configspace(),
run_id=exp_name,
host='127.0.0.1',
nameserver=ns_host,
nameserver_port=ns_port,
result_logger=result_logger,
min_budget=2, max_budget=5,
)
print('Worker running')
res = bohb.run(n_iterations=iterations)
# Store the results
with open(os.path.join(run_dir, 'result.pkl'), 'wb') as file:
pickle.dump(res, file)
# Shutdown
bohb.shutdown(shutdown_workers=True)
NS.shutdown()
# get all runs
all_runs = res.get_all_runs()
# get id to configuration mapping as dictionary
id2conf = res.get_id2config_mapping()
# get best/incubent run
best_run = res.get_incumbent_id()
best_config = id2conf[best_run]['config']
print(f"Best run id:{best_run}, \n Config:{best_config}")
# Store all run info
file = open(os.path.join(run_dir, 'summary.txt'), 'w')
file.write(f"{all_runs}")
file.close()
return best_config
if __name__ =='__main__':
run_bohb('01', iterations=20)