-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
382 lines (327 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
import argparse
import logging
import time
import numpy as np
import torch.nn as nn
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchsummary import summary
from torch.utils.data.sampler import SubsetRandomSampler
import torch.backends.cudnn as cudnn
from train_search import darts
from model import NetworkKMNIST as Network
from model import EnsembleModel, MajorityEnsembleModel
from train import train, infer, ensemble_train, ensemble_infer, majority_predict
from darts_bohamiann import BohamiannWorker
from darts_es import ESWorker
from darts_bohb import run_bohb
from bohb_ensemble import run_bohb_ensemble
import hpbandster.core.result as hpres
from sklearn.ensemble import VotingClassifier
# import hpbandster.visualization as hpvis
import hpbandster.core.nameserver as hpns
from hpbandster.optimizers import BOHB
from datasets import K49, KMNIST, FeaturesDataset
from settings import get, get_darts_args, get_main_args
import utils
import sys
import pickle
import glob
import genotypes
torch.set_default_tensor_type(torch.cuda.FloatTensor)
def run_model(config,
seed=get('seed'),
data_dir='./data',
genotype_class='PCDARTS',
num_epochs=20,
batch_size=get('batch_size'),
init_channels=get('init_channels'),
train_criterion=torch.nn.CrossEntropyLoss,
data_augmentations=None,
save_model_str=None, config_type='BOHB', **kwargs):
"""
Training loop for configurableNet.
:param model_config: network config (dict)
:param data_dir: dataset path (str)
:param num_epochs: (int)
:param batch_size: (int)
:param learning_rate: model optimizer learning rate (float)
:param train_criterion: Which loss to use during training (torch.nn._Loss)
:param model_optimizer: Which model optimizer to use during trainnig (torch.optim.Optimizer)
:param data_augmentations: List of data augmentations to apply such as rescaling.
(list[transformations], transforms.Composition[list[transformations]], None)
If none only ToTensor is used
:return:
"""
# instantiate optimize
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
gpu = 'cuda:0'
np.random.seed(seed)
torch.cuda.set_device(gpu)
cudnn.benchmark = True
torch.manual_seed(seed)
cudnn.enabled=True
torch.cuda.manual_seed(seed)
logging.info('gpu device = %s' % gpu)
logging.info("config = %s", config)
if data_augmentations is None:
# You can add any preprocessing/data augmentation you want here
data_augmentations = transforms.ToTensor()
elif isinstance(type(data_augmentations), list):
data_augmentations = transforms.Compose(data_augmentations)
elif not isinstance(data_augmentations, transforms.Compose):
raise NotImplementedError
train_dataset = K49(data_dir, True, data_augmentations)
test_dataset = K49(data_dir, False, data_augmentations)
# train_dataset = KMNIST(data_dir, True, data_augmentations)
# test_dataset = KMNIST(data_dir, False, data_augmentations)
# Make data batch iterable
# Could modify the sampler to not uniformly random sample
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
genotype = eval("genotypes.%s" % genotype_class)
model = Network(init_channels, train_dataset.n_classes, config['n_conv_layers'], genotype)
model = model.cuda()
total_model_params = np.sum(p.numel() for p in model.parameters())
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
criterion = train_criterion()
criterion = criterion.cuda()
if config['optimizer'] == 'sgd' and config_type=='BOHB':
optimizer = torch.optim.SGD(model.parameters(),
lr=config['initial_lr'],
momentum=config['sgd_momentum'],
weight_decay=config['weight_decay'],
nesterov=config['nesterov'])
elif config['optimizer'] == 'sgd' and config_type is not BOHB:
optimizer = torch.optim.SGD(model.parameters(),
lr=config['initial_lr'],
momentum=0.9,
weight_decay=0,
nesterov=False)
else:
optimizer = get('opti_dict')[config['optimizer']](model.parameters(), lr=config['initial_lr'], weight_decay=config['weight_decay'])
if config['lr_scheduler'] == 'Cosine':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)
elif config['lr_scheduler'] == 'Exponential':
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.1)
# logging.info('Generated Network:')
# summary(model, (train_dataset.channels,
# train_dataset.img_rows,
# train_dataset.img_cols),
# device='cuda' if torch.cuda.is_available() else 'cpu')
for epoch in range(num_epochs):
logging.info('epoch %d lr %e', epoch, lr_scheduler.get_lr()[0])
model.drop_path_prob = config['drop_path_prob'] * epoch / num_epochs
train_acc, train_obj = train(train_loader, model, criterion, optimizer, grad_clip=config['grad_clip_value'])
logging.info('train_acc %f', train_acc)
lr_scheduler.step()
test_acc, test_obj = infer(test_loader, model, criterion)
logging.info('test_acc %f', test_acc)
if save_model_str:
# Save the model checkpoint, can be restored via "model = torch.load(save_model_str)"
if not os.path.exists(save_model_str):
os.mkdir(save_model_str)
save_model_str += '_'.join(time.ctime())
save_model_str += '_{}'.format(config_type)
torch.save(model.state_dict(), save_model_str)
return test_acc, save_model_str
def create_run_ensemble(model_description,
ensemble_config,
seed=get('seed'),
num_epochs=20,
data_dir='./data',
init_channels=get('init_channels'),
batch_size=get('batch_size'),
genotype_class='PCDARTS',
data_augmentations=None,
save_model_str=None):
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
gpu = 'cuda:0'
np.random.seed(seed)
torch.cuda.set_device(gpu)
cudnn.benchmark = True
torch.manual_seed(seed)
cudnn.enabled=True
torch.cuda.manual_seed(seed)
logging.info('gpu device = %s' % gpu)
if data_augmentations is None:
# You can add any preprocessing/data augmentation you want here
data_augmentations = transforms.ToTensor()
elif isinstance(type(data_augmentations), list):
data_augmentations = transforms.Compose(data_augmentations)
elif not isinstance(data_augmentations, transforms.Compose):
raise NotImplementedError
train_dataset = K49(data_dir, True, data_augmentations)
test_dataset = K49(data_dir, False, data_augmentations)
# train_dataset = KMNIST(data_dir, True, data_augmentations)
# test_dataset = KMNIST(data_dir, False, data_augmentations)
# Make data batch iterable
# Could modify the sampler to not uniformly random sample
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
genotype = eval("genotypes.%s" % genotype_class)
trained_models = []
for i, model_state in enumerate(model_description.keys()):
model = Network(init_channels, train_dataset.n_classes, model_description[model_state]['config']['n_conv_layers'], genotype)
model.load_state_dict(torch.load(model_description[model_state]['model_path']))
model.cuda()
model.drop_path_prob = model_description[model_state]['config']['drop_path_prob']
trained_models.append(model)
ensemble_model = EnsembleModel(trained_models, dense_units = ensemble_config['dense_units'], out_size=train_dataset.n_classes)
ensemble_model = ensemble_model.cuda()
summary(ensemble_model, input_size=(1,28,28))
criterion = torch.nn.CrossEntropyLoss()
criterion = criterion.cuda()
if ensemble_config['optimizer'] == 'sgd':
optimizer = torch.optim.SGD(model.parameters(),
lr=ensemble_config['initial_lr'],
momentum=ensemble_config['sgd_momentum'],
weight_decay=ensemble_config['weight_decay'],
nesterov=ensemble_config['nesterov'])
else:
optimizer = get('opti_dict')[ensemble_config['optimizer']](model.parameters(), lr=ensemble_config['initial_lr'], weight_decay=ensemble_config['weight_decay'])
if ensemble_config['lr_scheduler'] == 'Cosine':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)
elif ensemble_config['lr_scheduler'] == 'Exponential':
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.1)
print('Started Training')
for epoch in range(num_epochs):
logging.info('epoch %d lr %e', epoch, lr_scheduler.get_lr()[0])
model.drop_path_prob = ensemble_config['drop_path_prob'] * epoch / num_epochs
for p in ensemble_model.model_1.parameters():
p.requires_grad=False
for p in ensemble_model.model_2.parameters():
p.requires_grad=False
for p in ensemble_model.model_3.parameters():
p.requires_grad=False
for p in ensemble_model.out_classifier.parameters():
p.requires_grad=True
train_acc, train_obj, models_avg = ensemble_train(train_loader, ensemble_model, criterion, optimizer, grad_clip=ensemble_config['grad_clip_value'])
logging.info('train_acc %f', train_acc)
logging.info('models_avg {}'.format(models_avg))
lr_scheduler.step()
test_acc, test_obj, models_avg = ensemble_infer(test_loader, ensemble_model, criterion)
logging.info('test_acc %f', test_acc)
logging.info('models_avg {}'.format(models_avg))
if save_model_str:
# Save the model checkpoint, can be restored via "model = torch.load(save_model_str)"
if not os.path.exists(save_model_str):
os.mkdir(save_model_str)
os.path.join(save_model_str, 'ENSEMBLE')
torch.save(ensemble_model.state_dict(), os.path.join(save_model_str, time.ctime()))
def create_majority_ensemble(model_description,
ensemble_config,
seed=get('seed'),
num_epochs=20,
data_dir='./data',
init_channels=get('init_channels'),
batch_size=get('batch_size'),
genotype_class='PCDARTS',
data_augmentations=None,
save_model_str=None):
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
gpu = 'cuda:0'
np.random.seed(seed)
torch.cuda.set_device(gpu)
cudnn.benchmark = True
torch.manual_seed(seed)
cudnn.enabled=True
torch.cuda.manual_seed(seed)
logging.info('gpu device = %s' % gpu)
if data_augmentations is None:
# You can add any preprocessing/data augmentation you want here
data_augmentations = transforms.ToTensor()
elif isinstance(type(data_augmentations), list):
data_augmentations = transforms.Compose(data_augmentations)
elif not isinstance(data_augmentations, transforms.Compose):
raise NotImplementedError
train_dataset = K49(data_dir, True, data_augmentations)
test_dataset = K49(data_dir, False, data_augmentations)
# train_dataset = KMNIST(data_dir, True, data_augmentations)
# test_dataset = KMNIST(data_dir, False, data_augmentations)
# Make data batch iterable
# Could modify the sampler to not uniformly random sample
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
criterion = torch.nn.CrossEntropyLoss()
criterion = criterion.cuda()
genotype = eval("genotypes.%s" % genotype_class)
trained_models = []
for i, model_state in enumerate(model_description.keys()):
model = Network(init_channels, train_dataset.n_classes, model_description[model_state]['config']['n_conv_layers'], genotype)
model.load_state_dict(torch.load(model_description[model_state]['model_path']))
model.cuda()
model.drop_path_prob = model_description[model_state]['config']['drop_path_prob']
trained_models.append(model)
ensemble_model = MajorityEnsembleModel(trained_models)
print('Started Training')
for epoch in range(num_epochs):
test_acc, models_avg = majority_predict(test_loader, ensemble_model, criterion, 50)
logging.info('test_acc %f', test_acc)
logging.info('models_avg {}'.format(models_avg))
if save_model_str:
# Save the model checkpoint, can be restored via "model = torch.load(save_model_str)"
if not os.path.exists(save_model_str):
os.mkdir(save_model_str)
os.path.join(save_model_str, 'ENSEMBLE')
torch.save(ensemble_model.state_dict(), os.path.join(save_model_str, time.ctime()))
if __name__ == '__main__':
"""
This is just an example of how you can use train and evaluate
to interact with the configurable network
"""
args = get_main_args()
log_lvl = logging.INFO if args['verbose'] == 'INFO' else logging.DEBUG
logging.basicConfig(level=log_lvl)
darts_args = get_darts_args()
exp_no = args['exp_no']
exp_name = 'EXP{}'.format(exp_no)
exp_dir = './{}'.format(exp_name)
if not os.path.exists(exp_dir):
os.mkdir(exp_dir)
# darts(exp_name, darts_args)
model_description = dict()
model_description['bohb'] = dict()
model_description['bohb']['config'] = {'drop_path_prob': 0.04992452260234029, 'grad_clip_value': 7, 'initial_lr': 0.0028493238730520885, 'lr_scheduler': 'Cosine', 'n_conv_layers': 5, 'optimizer': 'adam', 'weight_decay': 1.465223282456662e-05}#run_bohb('3', iterations=40)
_, model_description['bohb']['model_path'] = 'blah', './stored_models/T_h_u_ _S_e_p_ _1_2_ _2_1_:_5_2_:_5_0_ _2_0_1_9_BOHB' #run_model(model_description['bohb']['config'], save_model_str=get('run_dir'), config_type='BOHB')
model_description['bohamiann'] = dict()
worker = BohamiannWorker('./bohamiann', experiment_no=1)
model_description['bohamiann']['config'] = {'drop_path_prob': 0.008888888888888894, 'grad_clip_value': 8, 'initial_lr': 0.0012618275345906706, 'lr_scheduler': 'Cosine', 'n_conv_layers': 6, 'optimizer': 'adam', 'weight_decay': 1.0002993808675978e-05} # worker.run_bohamiann(iterations=40)
_, model_description['bohamiann']['model_path'] = "blah", './stored_models/F_r_i_ _S_e_p_ _1_3_ _0_1_:_1_1_:_3_2_ _2_0_1_9_BOHAMIANN' #run_model(model_description['bohamiann']['config'], save_model_str=get('run_dir'), config_type='BOHAMIANN')
model_description['es'] = dict()
es_worker = ESWorker('./es', experiment_no=1)
model_description['es']['config'] = {'drop_path_prob': 0.05001692829452364, 'grad_clip_value': 8, 'initial_lr': 0.00018606192447967088, 'lr_scheduler': 'Cosine', 'n_conv_layers': 6, 'optimizer': 'adam', 'weight_decay': 1.0036871953186636e-05} #es_worker.run_es(iterations=40)
_, model_description['es']['model_path'] = 'blah', './stored_models/F_r_i_ _S_e_p_ _1_3_ _0_4_:_0_1_:_0_7_ _2_0_1_9_ES' #run_model(model_description['es']['config'], save_model_str=get('run_dir'), config_type='ES')
start = time.time()
ensemble_config = {"dense_units": 116, "drop_path_prob": 0.3201740243121082, "grad_clip_value": 7, "initial_lr": 0.04442566012293193, "lr_scheduler": "Cosine", "optimizer": "sgd", "weight_decay": 7.901347741481734e-05, "nesterov": "False", "sgd_momentum": 0.628375546131343} #run_bohb_ensemble(exp_name=1, model_description=model_description, iterations=10)
print("time taken ={} s".format(time.time() - start))
start = time.time()
create_majority_ensemble(model_description,
ensemble_config,
seed=get('seed'),
num_epochs=20,
init_channels=get('init_channels'),
batch_size=get('batch_size'),
genotype_class='PCDARTS',
save_model_str=get('run_dir'))
print("time taken ={} s".format(time.time() - start))