-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_test.py
executable file
·55 lines (43 loc) · 1.79 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import sys
import tensorflow as tf
import cPickle as pkl
from os import listdir
from os.path import isfile, join
# change this as you see fit
source_dir = sys.argv[1]
#Threshold
THRESHOLD = sys.argv[2]
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("./output_dir/labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("./output_dir/graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
file_list = [f for f in listdir(source_dir) if isfile(join(source_dir, f))]
writter = open('result_new.txt', 'wb')
NUM_LABELS = 3
print 'PRINT LABELS!!! '
for id in range(NUM_LABELS):
print label_lines[id]
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
for true_filename in file_list:
#print (true_filename)
image_path = join(source_dir, true_filename)
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
# top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
#
# for node_id in top_k:
# human_string = label_lines[node_id]
# score = predictions[0][node_id]
# print('%s (score = %.5f)' % (human_string, score))
if predictions[0][2] < 0.5:
writter.write(str(predictions[0][0]) + ' ' + str(predictions[0][1]) + ' ' + str(predictions[0][2]) + ' ' + true_filename + '\n')
#if predictions[0][0] < 0.5:
# writter.write(true_filename + '\n')