-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_singletask.py
executable file
·828 lines (710 loc) · 32.6 KB
/
main_singletask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# python main_singletask.py --path_to_partition_indices data/matminer/saved_partition_indices/all_task_partition_indices_seed0.pkl --train_ratio 0.7 --val_ratio 0.15 --test_ratio 0.15 --h_fea_len 32 --seed 0
import argparse
import os
import shutil
import sys
import time
import json
import random
import csv
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Subset
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import CosineAnnealingLR
from cgcnn.data import CIFDataWrapper_without_shuffling
from moe.utils import get_small_datasets_info_dict, normalizer_from_subsets
from cgcnn.data import collate_pool, get_train_val_test_loader
from cgcnn.model import CrystalGraphConvNet
parser = argparse.ArgumentParser(description='Crystal Graph Convolutional Neural Networks')
parser.add_argument('--property_to_train', type=str,
default='expt_eform',
help='See keys of moe.utils.get_small_dataset_info_dict '
'for possible property names.')
parser.add_argument('--filename_prefix', default='', type=str, metavar='F',
help='String to prepend to output files.')
parser.add_argument('--plot', action="store_true", help='If True, plot loss '
'curves. Default False.')
parser.add_argument('--task', choices=['regression', 'classification'],
default='regression',
help='complete a regression or classification task (default: regression)')
parser.add_argument('--num_classes', default=0, type=int,
help='Number of classes (if doing classification)')
parser.add_argument('--disable-cuda', action='store_true',
help='Disable CUDA')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
help='number of data loading workers (default: 0)')
parser.add_argument('--epochs', default=1000, type=int, metavar='N',
help='number of total epochs to run (default: 1000)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch_size', default=250, type=int,
metavar='N', help='mini-batch size (default: 250)')
parser.add_argument('--lr', '--learning-rate', default=0.02, type=float,
metavar='LR', help='initial learning rate (default: '
'0.01)')
parser.add_argument('--lr-milestones', default=[800], nargs='+', type=int,
metavar='N', help='milestones for scheduler (default: '
'[100])')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--use_gradient_clipping', action='store_true',
help='Elementwise gradient clipping.')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay (default: 0)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--checkpoint_every_200_epochs', action='store_true',
help='Save a model checkpoint every 200 epochs.')
train_group = parser.add_mutually_exclusive_group()
train_group.add_argument('--train_ratio', default=None, type=float, metavar='N',
help='number of training data to be loaded (default none)')
train_group.add_argument('--train_size', default=None, type=int, metavar='N',
help='number of training data to be loaded (default none)')
valid_group = parser.add_mutually_exclusive_group()
valid_group.add_argument('--val_ratio', default=0.1, type=float, metavar='N',
help='percentage of validation data to be loaded (default '
'0.1)')
valid_group.add_argument('--val_size', default=None, type=int, metavar='N',
help='number of validation data to be loaded (default '
'1000)')
test_group = parser.add_mutually_exclusive_group()
test_group.add_argument('--test_ratio', default=0, type=float, metavar='N',
help='percentage of test data to be loaded (default 0)')
test_group.add_argument('--test_size', default=None, type=int, metavar='N',
help='number of test data to be loaded (default 1000)')
parser.add_argument('--optim', default='SGD', type=str, metavar='SGD',
help='choose an optimizer, SGD or Adam, (default: SGD)')
parser.add_argument('--atom-fea-len', default=64, type=int, metavar='N',
help='number of hidden atom features in conv layers')
parser.add_argument('--h_fea_len', default=32, type=int, metavar='N',
help='number of hidden features after pooling')
parser.add_argument('--n_conv', default=4, type=int, metavar='N',
help='number of conv layers')
parser.add_argument('--n-h', default=1, type=int, metavar='N',
help='number of hidden layers after pooling')
parser.add_argument('--weight_decay', default=0.0, type=float)
parser.add_argument('--weighted_sampling', action='store_true')
parser.add_argument('--path_to_partition_indices', default='', type=str)
args = parser.parse_args(sys.argv[1:])
args.cuda = not args.disable_cuda and torch.cuda.is_available()
if args.task == 'regression':
best_error = 1e20
else:
best_error = 0.
from datetime import date
today = str(date.today())
if not os.path.exists(today):
os.makedirs(today)
if not args.filename_prefix:
filename_prefix = today + '/MRS_singletask' # to pre-pend to filenames of results
else:
filename_prefix = args.filename_prefix
def main():
global args, best_error, filename_prefix
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed) # also sets the pandas random_state
general_kwargs, model_kwargs, dataset_kwargs, \
dataloader_kwargs, optimizer_kwargs, scheduler_kwargs = initialize_kwargs()
optimizer_kwargs['weight_decay'] = args.weight_decay
model_kwargs['h_fea_len'] = args.h_fea_len
model_kwargs['n_conv'] = args.n_conv
# Save hyperparameters to json
hyperparameter_dict = {
'property_to_train': args.property_to_train,
'train_size': args.train_size,
'val_size': args.val_size,
'general_kwargs': general_kwargs,
'model_kwargs': model_kwargs,
'dataset_kwargs': dataset_kwargs,
'optimizer_kwargs': optimizer_kwargs,
'scheduler_kwargs': scheduler_kwargs}
with open(filename_prefix + '_hyperparameters.json', 'w+') as file:
json.dump(hyperparameter_dict, file)
with open('cgcnn/data/sample-regression/atom_init.json') as atom_init_json:
atom_init_dict = json.load(atom_init_json)
# ----- Load pickled data -----
learning_tasks = {}
dataset_info = get_small_datasets_info_dict()
dataset_info = dataset_info[args.property_to_train]
filename = dataset_info['path']
df = pd.read_pickle(filename)
if args.path_to_partition_indices:
with open(args.path_to_partition_indices, 'rb') as f:
dict_of_task_indices = json.load(f)
task_name = args.property_to_train
train_indices, val_indices, test_indices = \
dict_of_task_indices[task_name]
test_size = len(test_indices)
dataset = CIFDataWrapper_without_shuffling(
X=df['structure'].tolist(),
y=df[dataset_info['target_name']].tolist(),
atom_init_fea=atom_init_dict, **dataset_kwargs)
else:
raise AttributeError
learning_tasks[args.property_to_train] = {
'dataset': dataset,
'mean_absolute_deviation': df[dataset_info['target_name']].mad(),
'train_dl': None, 'val_dl': None, 'test_dl': None,
'weighted_sampling': args.weighted_sampling}
# print('mad: {}'.format(df[dataset_info['target_name']].mad()))
# raise NotImplementedError
if args.weighted_sampling:
try:
learning_tasks[args.property_to_train]['sample_weights'] = \
df[dataset_info['target_name'] + '_weights']
except:
raise AttributeError('You set --weighted_sampling to True, but '
'did not provide sample weights.')
# ----- Create train/val/test splits and normalize each dataset -----
collate_fn = collate_pool
for learning_task_name, learning_task_dict in learning_tasks.items():
dataset = learning_task_dict['dataset']
sample_weights = None if not args.weighted_sampling else \
learning_task_dict['sample_weights']
# Turn a torch.utils.data.Dataset into torch.utils.data.DataLoader train
# /validation/test splits
train_loader, val_loader, test_loader = get_train_val_test_loader(
dataset=dataset,
collate_fn=collate_fn,
batch_size=args.batch_size,
train_ratio=args.train_ratio,
num_workers=args.workers,
val_ratio=args.val_ratio,
test_ratio=args.test_ratio,
pin_memory=args.cuda,
return_test=True if test_size > 0 else False,
train_size=args.train_size, # optional. Overrides train_ratio.
test_size=args.test_size, # optional. Overrides test_ratio.
val_size=args.val_size, # optional. Overrides val_ratio.
weighted_sampling=args.weighted_sampling,
sample_weights=sample_weights,
train_indices=train_indices,
val_indices=val_indices,
test_indices=test_indices
)
learning_tasks[learning_task_name]['train_dl'] = train_loader
learning_tasks[learning_task_name]['val_dl'] = val_loader
# obtain target variable normalizer
if args.task == 'classification':
normalizer = Normalizer(torch.zeros(2)) # normalizes mean and std of tensor
normalizer.load_state_dict({'mean': 0., 'std': 1.})
else:
train_subset = Subset(dataset, train_indices)
val_subset = Subset(dataset, val_indices)
normalizer = normalizer_from_subsets([train_subset, val_subset])
# initialize model
model = CrystalGraphConvNet(
classification=True if args.task == 'classification'
else False, **model_kwargs)
if args.cuda:
model.cuda()
if args.use_gradient_clipping: # Apply gradient clipping
clip_value = 1
for p in model.parameters():
if p.requires_grad:
# modify parameter gradient in-place during backward passes
p.register_hook(lambda grad:
torch.clamp(grad, -clip_value, clip_value))
if optimizer_kwargs['optim'] == 'SGD':
optimizer = optim.SGD(model.parameters(), optimizer_kwargs['lr'],
momentum=optimizer_kwargs['momentum'],
weight_decay=optimizer_kwargs['weight_decay'])
elif optimizer_kwargs['optim'] == 'Adam':
optimizer = optim.Adam(model.parameters(), optimizer_kwargs['lr'],
weight_decay=optimizer_kwargs['weight_decay'])
else:
raise NameError('Only SGD or Adam is allowed as --optim')
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_mae_error = checkpoint['best_mae_error']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
normalizer.load_state_dict(checkpoint['normalizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Create file for storing losses
losses_filename = filename_prefix
if args.resume:
# Don't overwrite the old file
losses_filename += '_loss_data_continued.csv'
else:
losses_filename += '_loss_data.csv'
loss_file = open(losses_filename, 'w', encoding='utf-8')
writer = csv.writer(loss_file)
writer.writerow(['epoch', 'avg training loss', 'avg validation loss',
'avg training mae', 'avg validation mae'])
loss_file.close()
# Decay learning rate by gamma when number of training epochs have passed
# specified numbers/"milestones" (i.e., decays lr stepwise)
scheduler = CosineAnnealingLR(
optimizer, T_max=args.epochs, eta_min=1.0e-5)
# Initialize lists for recording loss data
epoch_idxs = np.empty(0) # Store the epoch number
train_losses_per_epoch = np.empty(0) # Store each epoch's average training loss
val_loss_per_epoch = np.empty(0)
train_mae_errors_per_epoch = np.empty(0)
val_mae_errors_per_epoch = np.empty(0)
# Train/validate
epochs_without_improvement = 0
criterion = nn.MSELoss() if args.task == 'regression' else nn.NLLLoss()
for epoch in range(args.start_epoch, args.epochs): # default: 1000 epochs
print('---------- epoch {} ----------'.format(epoch))
# train for one epoch
train_loss_avg, train_mae_error = train(
train_loader, model, criterion, optimizer, epoch, normalizer)
print('train_loss_avg: {}'.format(train_loss_avg))
# evaluate on validation set
val_loss_avg, mae_error = validate( # average loss of all batches in the epoch
val_loader, model, criterion, normalizer)
if mae_error != mae_error:
print('Exit due to NaN')
sys.exit(1)
scheduler.step()
# remember the best mae_eror and save checkpoint
if args.task == 'regression':
is_best = mae_error < best_error
best_error = min(mae_error, best_error)
if is_best:
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
else:
is_best = mae_error > best_error
best_error = max(mae_error, best_error)
if is_best:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_mae_error': best_error,
'optimizer': optimizer.state_dict(),
'normalizer': normalizer.state_dict(),
'args': vars(args)},
is_best, filename=filename_prefix + '_checkpoint.pth.tar',
best_model_filename=filename_prefix + '_best_model.pth.tar')
if args.checkpoint_every_200_epochs and epoch % 200 == 0:
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_mae_error': best_error}, False,
filename=filename_prefix + '_checkpoint_epoch' + str(epoch) +
'.pth.tar')
# Store epoch numbers and losses for plotting
epoch_idxs = np.append(epoch_idxs, epoch)
train_losses_per_epoch = np.append(
train_losses_per_epoch, train_loss_avg) # average loss all batches in the epoch
val_loss_per_epoch = np.append(val_loss_per_epoch, val_loss_avg)
train_mae_errors_per_epoch = np.append(
train_mae_errors_per_epoch, train_mae_error)
val_mae_errors_per_epoch = np.append(
val_mae_errors_per_epoch, mae_error
)
if epochs_without_improvement == 500:
print('Early stopping!')
break
# Write losses to csv
loss_file = open(losses_filename, 'a', encoding='utf-8')
writer = csv.writer(loss_file)
writer.writerow([epoch, train_loss_avg, val_loss_avg,
train_mae_error, mae_error])
loss_file.close()
# test best model
print('---------Evaluate Model on Test Set---------------')
best_checkpoint = torch.load(filename_prefix + '_best_model.pth.tar')
model.load_state_dict(best_checkpoint['state_dict'])
final_test_loss, final_test_mae = validate(
test_loader, model, criterion, normalizer, test=True)
losses_filename = filename_prefix
if args.resume:
# Don't overwrite the old file
losses_filename += '_test_performance_continued.csv'
else:
losses_filename += '_test_performance.csv'
loss_file = open(losses_filename, 'w', encoding='utf-8')
writer = csv.writer(loss_file)
writer.writerow(['avg test loss', 'avg test MAE'])
writer.writerow([final_test_loss, final_test_mae])
loss_file.close()
def train(train_loader, model, criterion, optimizer, epoch, normalizer):
"""
Original CGCNN training function.
Returns:
(losses.avg, mae_errors.avg)
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
if args.task == 'regression':
mae_errors = AverageMeter()
else:
accuracies = AverageMeter()
precisions = AverageMeter()
recalls = AverageMeter()
fscores = AverageMeter()
auc_scores = AverageMeter()
# switch to train mode
model.train()
end = time.time()
print('training partition size: {}'.format(len(train_loader.sampler)))
for i, (input, target, _) in enumerate(train_loader):
# 'i' here is batch index
# measure data loading time
data_time.update(time.time() - end)
# print('num crystals: {}'.format(len(input[3])))
if args.cuda:
input_var = (Variable(input[0].cuda(non_blocking=True)),
Variable(input[1].cuda(non_blocking=True)),
input[2].cuda(non_blocking=True),
[crys_idx.cuda(non_blocking=True) for crys_idx in input[3]])
else:
input_var = (Variable(input[0]),
Variable(input[1]),
input[2],
input[3])
# normalize target
if args.task == 'regression':
target_normed = normalizer.norm(target)
else:
target_normed = target.view(-1).long()
if args.cuda:
target_var = Variable(target_normed.cuda(non_blocking=True))
else:
target_var = Variable(target_normed)
# compute output
output = model(*input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
if args.task == 'regression':
mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.data.cpu(), target.size(0))
mae_errors.update(mae_error, target.size(0))
else:
accuracy = class_eval(output.data.cpu(), target, accuracy_only=True)
losses.update(loss.data.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
# precisions.update(precision, target.size(0))
# recalls.update(recall, target.size(0))
# fscores.update(fscore, target.size(0))
# auc_scores.update(auc_score, target.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if args.task == 'regression':
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, mae_errors=mae_errors)
)
else:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accu {accu.val:.3f} ({accu.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, accu=accuracies)
)
if args.task == 'regression':
return losses.avg, mae_errors.avg
else:
return losses.avg, accuracies.avg
def validate(val_loader, model, criterion, normalizer, test=False):
# This method is used for the validation and test sets (simply pass in
# 'test_loader' instead of 'val_loader' and set 'test' to True.
"""
:param val_loader:
:param model:
:param criterion:
:param normalizer:
:param test:
Returns:
If regression: losses.avg, mae_errors.avg
If classification: auc_errors.avg
"""
batch_time = AverageMeter()
losses = AverageMeter()
if args.task == 'regression':
mae_errors = AverageMeter()
else:
accuracies = AverageMeter()
precisions = AverageMeter()
recalls = AverageMeter()
fscores = AverageMeter()
auc_scores = AverageMeter()
if test:
test_targets = []
test_preds = []
test_cif_ids = []
# switch to evaluate mode
model.eval()
end = time.time()
print('val_loader length: {}'.format(len(val_loader.sampler)))
for i, (input, target, batch_cif_ids) in enumerate(val_loader):
# 'i' is the batch number
if args.cuda:
with torch.no_grad():
input_var = (Variable(input[0].cuda(non_blocking=True)),
Variable(input[1].cuda(non_blocking=True)),
input[2].cuda(non_blocking=True),
[crys_idx.cuda(non_blocking=True) for crys_idx in input[3]])
else:
with torch.no_grad():
input_var = (Variable(input[0]),
Variable(input[1]),
input[2],
input[3])
if args.task == 'regression':
target_normed = normalizer.norm(target)
else:
target_normed = target.view(-1).long()
if args.cuda:
with torch.no_grad():
target_var = Variable(target_normed.cuda(non_blocking=True))
else:
with torch.no_grad():
target_var = Variable(target_normed)
# compute output
output = model(*input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
if args.task == 'regression':
mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.data.cpu().item(), target.size(0))
mae_errors.update(mae_error, target.size(0))
if test:
test_pred = normalizer.denorm(output.data.cpu())
test_target = target
test_preds += test_pred.view(-1).tolist()
test_targets += test_target.view(-1).tolist()
test_cif_ids += batch_cif_ids
else:
accuracy = class_eval(output.data.cpu(), target, accuracy_only=True)
losses.update(loss.data.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
# precisions.update(precision, target.size(0))
# recalls.update(recall, target.size(0))
# fscores.update(fscore, target.size(0))
# auc_scores.update(auc_score, target.size(0))
if test:
test_pred = torch.exp(output.data.cpu())
test_target = target
assert test_pred.shape[1] == 2
test_preds += test_pred[:, 1].tolist()
test_targets += test_target.view(-1).tolist()
test_cif_ids += batch_cif_ids
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if args.task == 'regression':
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
i+1, len(val_loader), batch_time=batch_time, loss=losses,
mae_errors=mae_errors))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accu {accu.val:.3f} ({accu.avg:.3f})'.format(
i+1, len(val_loader), batch_time=batch_time, loss=losses,
accu=accuracies))
if test:
star_label = '**'
import csv
with open(filename_prefix + 'test_results.csv', 'w') as f:
writer = csv.writer(f)
for cif_id, target, pred in zip(test_cif_ids, test_targets,
test_preds):
writer.writerow((cif_id, target, pred))
else:
star_label = '*'
if args.task == 'regression':
print(' {star} MAE {mae_errors.avg:.3f}'.format(star=star_label,
mae_errors=mae_errors))
return losses.avg, mae_errors.avg
else:
# print(' {star} AUC {auc.avg:.3f}'.format(star=star_label,
# auc=auc_scores))
# return auc_scores.avg
print(' {star} ACC {acc.avg:.3f}'.format(star=star_label,
acc=accuracies))
return losses.avg, accuracies.avg
def get_input_and_target_vars(input, target, normalizer, task_type):
if args.cuda:
input_var = (Variable(input[0].cuda(non_blocking=True)),
Variable(input[1].cuda(non_blocking=True)),
input[2].cuda(non_blocking=True),
[crys_idx.cuda(non_blocking=True) for crys_idx in
input[3]])
else:
input_var = (Variable(input[0]),
Variable(input[1]),
input[2],
input[3])
# normalize target
if task_type == 'regression':
target_normed = normalizer.norm(target)
else:
target_normed = target.view(-1).long()
if args.cuda:
target_var = Variable(target_normed.cuda(non_blocking=True))
else:
target_var = Variable(target_normed)
return input_var, target_var
class Normalizer(object):
"""Normalize a Tensor and restore it later. """
def __init__(self, tensor):
"""tensor is taken as a sample to calculate the mean and std"""
self.mean = torch.mean(tensor)
self.std = torch.std(tensor)
def norm(self, tensor):
normed_tensor = tensor
return (normed_tensor - self.mean) / self.std
def denorm(self, normed_tensor):
return normed_tensor * self.std + self.mean
def state_dict(self):
return {'mean': self.mean,
'std': self.std}
def load_state_dict(self, state_dict):
self.mean = state_dict['mean']
self.std = state_dict['std']
def mae(prediction, target):
"""
Computes the mean absolute error between prediction and target
Parameters
----------
prediction: torch.Tensor (N, 1)
target: torch.Tensor (N, 1)
"""
return torch.mean(torch.abs(target - prediction))
def class_eval(prediction, target, accuracy_only=False):
prediction = np.exp(prediction.numpy())
target = target.numpy()
pred_label = np.argmax(prediction, axis=1)
target_label = np.squeeze(target)
if not target_label.shape:
target_label = np.asarray([target_label])
# if not accuracy_only:
# if prediction.shape[1] == 2:
# precision, recall, fscore, _ = metrics.precision_recall_fscore_support(
# target_label, pred_label, average='binary')
# auc_score = metrics.roc_auc_score(target_label, prediction[:, 1])
# accuracy = metrics.accuracy_score(target_label, pred_label)
# else:
# raise NotImplementedError
# return accuracy, precision, recall, fscore, auc_score
# else:
# accuracy = metrics.accuracy_score(target_label, pred_label)
# return accuracy
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar',
best_model_filename='model_best.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_model_filename)
def adjust_learning_rate(optimizer, epoch, k):
"""Sets the learning rate to the initial LR decayed by 10 every k epochs"""
assert type(k) is int
lr = args.lr * (0.1 ** (epoch // k))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def initialize_kwargs(**cgcnn_kwargs):
"""
**Modified from matminer.featurizers.structure's CGCNNFeaturizer class
Process and group kwargs into model_kwargs, dataset_kwargs,
dataloader_kwargs, etc.
Args:
cgcnn_kwargs (dict, optional): CGCNN kwargs.
Returns:
general_kwargs (dict): general CGCNN settings
model_kwargs (dict):
dataset_kwargs (dict): kwargs to initialize CIFDataWrapper
dataloader_kwargs (dict):
optimizer_kwargs (dict):
scheduler_kwargs (dict):
"""
general_kwargs = {}
# Initialize some common-purpose kwargs
general_kwargs['task'] = cgcnn_kwargs.get('task', 'regression')
general_kwargs['test'] = cgcnn_kwargs.get('test', False)
general_kwargs['num_epochs'] = cgcnn_kwargs.get("num_epochs", 1000)
general_kwargs['print_freq'] = cgcnn_kwargs.get('print_freq', 10)
general_kwargs['cuda'] = torch.cuda.is_available() and \
not cgcnn_kwargs.get("disable_cuda", False)
general_kwargs['early_stopping_crit'] = cgcnn_kwargs.get(
'early_stopping_crit', 500) # stops training if validation error (not loss) does not improve after 500 epochs
# Initialize CrystalGraphConvNet model kwargs
model_kwargs = \
{"orig_atom_fea_len": cgcnn_kwargs.get("orig_atom_fea_len", 92),
"nbr_fea_len": cgcnn_kwargs.get("nbr_fea_len", 41),
"n_conv": cgcnn_kwargs.get("n_conv", 4),
"h_fea_len": cgcnn_kwargs.get("h_fea_len", 32),
"n_h": cgcnn_kwargs.get("n_h", 1),
"atom_fea_len": cgcnn_kwargs.get("atom_fea_len", 64)}
# Initialize CIFDataWrapper (pytorch dataset) kwargs
dataset_kwargs = \
{ # "atom_init_fea": atom_init_fea,
"max_num_nbr": cgcnn_kwargs.get("max_num_nbr", 12),
"radius": cgcnn_kwargs.get("radius", 8),
"dmin": cgcnn_kwargs.get("dmin", 0),
"step": cgcnn_kwargs.get("step", 0.2)}
# Initialize dataloader kwargs
dataloader_kwargs = \
{"batch_size": cgcnn_kwargs.get("batch_size", 256),
"num_workers": cgcnn_kwargs.get("num_workers", 0),
"train_size": cgcnn_kwargs.get("train_size", None),
"val_size": cgcnn_kwargs.get("val_size", None),
"test_size": cgcnn_kwargs.get("test_size", None),
"return_test": general_kwargs['test'],
"collate_fn": collate_pool,
"pin_memory": general_kwargs['cuda']}
# Initialize optimizer kwargs
optimizer_kwargs = \
{"optim": cgcnn_kwargs.get("optim", 'SGD'),
"lr": cgcnn_kwargs.get("lr", 0.02),
"momentum": cgcnn_kwargs.get("momentum", 0.9),
"weight_decay": cgcnn_kwargs.get("weight_decay", 0)}
# Initialize scheduler kwargs
scheduler_kwargs = \
{"gamma": cgcnn_kwargs.get("gamma", 0.1),
"milestones": cgcnn_kwargs.get("lr_milestones", [800])}
return general_kwargs, model_kwargs, dataset_kwargs, dataloader_kwargs, \
optimizer_kwargs, scheduler_kwargs
if __name__ == '__main__':
main()